Damped Iterative Explicit Guidance for Multistage Rockets with Thrust Drop Faults
Abstract
:1. Introduction
2. Optimal Control Problem for Multistage Rocket Entering Orbit
2.1. Optimal Control Problem Model
2.2. Solving Optimal Control Problem
3. High-Precision Thrust Integration Using GLQF
4. Damped Iterative Explicit Guidance
4.1. Damped Iteration Method for Time-to-Go
4.2. Control Parameter Calculation
4.3. Prediction and Correction of Injection Points
4.4. Iterative Process of DIEG
5. Simulation and Analysis
- hp-RPM: hp adaptive Radau pseudo-spectral method, implemented through GPOPS [41], which is used as the optimal algorithm in this study.
- Algorithm 0: The DIEG with and set to 0.01 s and 100 m, respectively.
- Algorithm 1: Set damping factor in DIEG.
- Algorithm 2: Replace GLQF with linearized thrust integral [7] in DIEG.
- Algorithm 3: Replace the transversality condition (18) with the orthogonal assumption (19) in DIGM.
5.1. Simulation Results and Analysis of Single-Phase Mission
- 2%: the maximum thrust drop ratio where Algorithm 4 converges;
- 9%: the maximum thrust drop ratio where Algorithm 1 converges;
- 14%: the maximum thrust drop ratio where Algorithm 2 converges;
- 34%: the maximum thrust drop ratio where Algorithm 3 converges;
- 35%: the maximum thrust drop ratio where Algorithm 0 converges.
5.2. Simulation Results and Analysis of Multiphase Mission
- 1%: the maximum thrust drop ratio where Algorithm 4 converges;
- 11%: the maximum thrust drop ratio where Algorithm 1 converges;
- 49%: the maximum thrust drop ratio where Algorithm 3 converges;
- 51%: the maximum thrust drop ratio where Algorithm 2 converges;
- 55%: the maximum thrust drop ratio where Algorithm 0 converges.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, W.; Zhang, Z. Analysis of Fault Modes and Applications of Self Adaptive Guidance Technology for Launch Vehicle. J. Astronaut. 2019, 40, 302. (In Chinese) [Google Scholar]
- Smith, I.E. General Formulation of the Iterative Guidance Mode; NASA TM X-53414; 1966. Available online: http://libarchstor2.uah.edu/digitalcollections/items/show/1596 (accessed on 13 January 2019).
- Chandler, D.C.; Smith, I.E. Development of the iterative guidance mode with its application to various vehicles and missions. J. Spacecr. Rocket. 1967, 4, 898–903. [Google Scholar] [CrossRef]
- Horn, H.J.; Chandler, D.C.; Buckelew, V.L. Iterative guidance applied to generalized missions. J. Spacecr. Rocket. 1969, 6, 4–8. [Google Scholar] [CrossRef]
- Goodman, J. Helmut Horn and the Origin of the Saturn V Iterative Guidance Mode (IGM). In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21 January 2021. [Google Scholar]
- Brand, T.J.; Brown, D.W.; Higgins, J.P. Space Shuttle GNC Equation Document No. 24 Unified Powered Flight Guidance. NAS9-10268. June 1973. Available online: https://ntrs.nasa.gov/citations/19740004402 (accessed on 16 February 2019).
- McHenry, R.L.; Long, A.D.; Cockrell, B.F.; Thibodeau, J.R., III; Brand, T.J. Space shuttle ascent guidance, navigation, and control. J. Astronaut. Sci. 1979, 27, 1–38. [Google Scholar]
- Jaggers, R.F. Asymmetrical Booster Ascent Guidance and Control System Design Study. In Space Shuttle Powered Explicit Guidance; NAS9-13568; NASA: Washington, DC, USA, 1974; Volume 5. [Google Scholar]
- Jaggers, R. An explicit solution to the exoatmospheric powered flight guidance and trajectory optimization problem for rocket propelled vehicles. In Proceedings of the Guidance and Control Conference, Hollywood, FL, USA, 8–10 August 1977; p. 1051. [Google Scholar]
- Goodman, J. Roland Jaggers and the Development of Space Shuttle Powered Explicit Guidance (PEG). In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021. [Google Scholar] [CrossRef]
- Vittal, R.V.; Bhat, M.S. An explicit closed-loop guidance for launch vehicles. Acta Astronaut. 1991, 25, 119–129. [Google Scholar] [CrossRef]
- Sinha, S.K.; Shrivastava, S.K. Optimal explicit guidance of multistage launch vehicle along three-dimensional trajectory. J. Guid. Control Dyn. 1990, 13, 394–403. [Google Scholar] [CrossRef]
- Delporte, M.; Sauvinet, F. Explicit guidance law for manned spacecraft. In Proceedings of the AIAA 1992–1145, Aerospace Design Conference, Irvine, CA, USA, 3–6 February 1992. [Google Scholar]
- Song, E.J.; Cho, S.; Roh, W.R. A comparison of iterative explicit guidance algorithms for space launch vehicles. Adv. Space Res. 2015, 55, 463–476. [Google Scholar] [CrossRef]
- Von der Porten, P.; Ahmad, N.; Hawkins, M.; Fill, T. Powered explicit guidance modifications and enhancements for space launch system Block-1 and Block-1B vehicles. In Proceedings of the AAS GNC (Guidance, Navigation, and Control) Conference (M18-6485), Breckenridge, CO, USA, 2–7 February 2018. [Google Scholar]
- Hawkins, M.; Ahmad, N. Guidance Modifications and Enhancements for Space Launch System Block-1 in Support of Artemis I and Beyond. In Proceedings of the 2020 AAS/AIAA Astrodynamics Specialist Conference (AAS 20-634), Virtual, 9–12 August 2020. [Google Scholar]
- Ito, T.; Sakai, S. Throttled explicit guidance for pinpoint landing under bounded thrust acceleration. Acta Astronaut. 2020, 176, 438–454. [Google Scholar] [CrossRef]
- Pontani, M.; Celani, F.; Carletta, S. Lunar descent and landing via two-phase explicit guidance and pulse-modulated reduced-attitude control. Acta Astronaut. 2023, 212, 672–685. [Google Scholar] [CrossRef]
- Jiaxin, R. An iterative guidance method for liquid launch vehicle. Sci. China Technol. Sci. 2009, 39, 696–706. (In Chinese) [Google Scholar]
- Wei, C.; Ju, X.; Wu, R.; He, Y.; Diao, Y. Geometry and time updaters-based arbitrary-yaw iterative explicit guidance for fixed-thrust boost back of vertical take-off/vertical landing reusable launch vehicles. Aerosp. Sci. Technol. 2019, 95, 105433. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, C.; Diao, Y.; Cui, N. On-line orbit planning and guidance for advanced upper stage. Aircr. Eng. Aerosp. Technol. 2019, 91, 634–647. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, Z.; Tang, S.; Zhang, Q. Improved iterative guidance method for launch vehicles. Acta Aeronaut. Astronaut. Sin. 2021, 42, 217–229. (In Chinese) [Google Scholar]
- Brown, K.; Johnson, G. Real-time optimal guidance. IEEE Trans. Autom. Control 1967, 12, 501–506. [Google Scholar] [CrossRef]
- Brown, K.; Harrold, E.; Johnson, G. Some new results on space shuttle atmospheric ascent optimization. In Proceedings of the Guidance, Control and Flight Mechanics Conference, Santa Barbara, CA, USA, 17–19 August 1970; p. 978. [Google Scholar]
- Jezewski, D.J. An optimal, analytic solution to the linear-gravity, constant-thrust trajectory problem. J. Spacecr. Rocket. 1971, 8, 793–796. [Google Scholar] [CrossRef]
- Dukeman, G.; Calise, A. Enhancements to an atmospheric ascent guidance algorithm. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, USA, 11–14 August 2003; p. 5638. [Google Scholar]
- Lu, P.; Griffin, B.J.; Dukeman, G.A.; Chavez, F.R. Rapid optimal multiburn ascent planning and guidance. J. Guid. Control Dyn. 2008, 31, 1656–1664. [Google Scholar] [CrossRef]
- Lu, P.; Pan, B. Highly constrained optimal launch ascent guidance. J. Guid. Control. Dyn. 2010, 33, 404–414. [Google Scholar] [CrossRef]
- Ahmad, N.; Hawkins, M.; Von der Porten, P.; Pinson, R.; Dukeman, G.; Fill, T. Closed loop guidance trade study for space launch system Block-1B vehicle. In Proceedings of the 2018 AAS/AIAA Astrodynamics Specialist Conference (M18-6865), Snowbird, UT, USA, 19–23 August 2018. [Google Scholar]
- Han, H.; Qiao, D.; Chen, H.; Li, X. Rapid planning for aerocapture trajectory via convex optimization. Aerosp. Sci. Technol. 2019, 84, 763–775. [Google Scholar] [CrossRef]
- Miao, X.; Cheng, L.; Zhang, Z.; Li, J.; Gong, S. Convex optimization for post-fault ascent trajectory replanning using auxiliary phases. Aerosp. Sci. Technol. 2023, 138, 108336. [Google Scholar] [CrossRef]
- Li, Y.; Pang, B.; Wei, C.; Cui, N.; Liu, Y. Online trajectory optimization for power system fault of launch vehicles via convex programming. Aerosp. Sci. Technol. 2020, 98, 105682. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Zhu, X.; Han, Q.; Cui, P.; Zhang, D. Multi-Scenario Trajectory Optimization for Vertical Takeoff and Vertical Landing Vehicles Using the Gauss Pseudospectral Method. Aerospace 2022, 9, 638. [Google Scholar] [CrossRef]
- De Oliveira, A.; Lavagna, M. Coupling of Advanced Guidance and Robust Control for the Descent and Precise Landing of Reusable Launchers. Aerospace 2024, 11, 914. [Google Scholar] [CrossRef]
- Lu, P. Convex–Concave Decomposition of Nonlinear Equality Constraints in Optimal Control. J. Guid. Control Dyn. 2020, 44, 4–14. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Z.; Jiang, F.; Zhou, C. Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 2436–2450. [Google Scholar] [CrossRef]
- Izzo, D.; Öztürk, E. Real-time guidance for low-thrust transfers using deep neural networks. J. Guid. Control Dyn. 2021, 44, 315–327. [Google Scholar] [CrossRef]
- Li, S.; Yan, Y.; Qiao, H.; Guan, X.; Li, X. Reinforcement Learning for Computational Guidance of Launch Vehicle Upper Stage. Int. J. Aerosp. Eng. 2022, 2022, 2935929. [Google Scholar] [CrossRef]
- Tian, S.; Du, L.; Wang, B.; Liu, L.; Fan, H. Trajectory optimization of multistage launch vehicle’s Orbital Flight Phase based on reinforcement learning Algorithm. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; pp. 801–806. [Google Scholar]
- Xue, S.; Wang, Z.; Bai, H.; Yu, C.; Li, Z. Research on Self-Learning Control Method of Reusable Launch Vehicle Based on Neural Network Architecture Search. Aerospace 2024, 11, 774. [Google Scholar] [CrossRef]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. (TOMS) 2014, 41, 1–37. [Google Scholar] [CrossRef]
Step | Description |
1 | Input and let . |
2 | Calculate . |
3 | Calculate by Formula (48). |
4 | Calculate by Formula (62). |
5 | Calculate by Formula (64). |
6 | If , where is the tolerance error, output ; if not, make and return to Step 2. |
Step | Description |
1 | Initialize , , , , , and . |
2 | At the beginning of a new flight phase, input parameters for each phase , , and ; input the remaining number of phases n. |
3 | At each guidance period, input the current flight states , , and . |
4 | Calculate by the method described in Section 4.1. |
5 | Calculate Lp and Jp using the previously described method [6], and calculate using Formula (58). |
6 | Calculate LT, JT, ST, and QT by using the GLQF method described in Section 3. |
7 | Calculate using the method described in Section 4.2. |
8 | Update and using Formula (24), and calculate LT, JT, ST, and QT again. |
9 | Predict and correct the position of the injection point by the method described in Section 4.3. |
10 | If , calculate and using Formula (79); if not, return to Step 4. |
Phase 1 | Phase 2 | Phase 3 | |
---|---|---|---|
Mass of fuel (kg) | 168,485.0 | 58,252.0 | 58,252.0 |
Mass of rocket structure (kg) | 116,844.0 | 38,743.0 | 38,743.0 |
Magnitude of thrust (N) | 2,869,956 | 0 | 271,207 |
Specific impulse (m/s) | 3389.7 | 0 | 4410.6 |
Flight time (s) | 199.00 | 11.00 | 263.45 |
Orbital Element | Initial Point in Multiphase Mission * | Initial Point in Single-Phase Mission ** | Nominal Injection Point |
---|---|---|---|
a (m) | 3,774,423.02 | 5,500,908.72 | 6,560,590.37 |
e | 0.734989 | 0.195333 | 0.002669 |
i (deg) | 24.59149 | 26.61440 | 26.95575 |
Ω (deg) | 342.53390 | 338.01405 | 337.61593 |
w (deg) | 313.70517 | 327.20465 | 290.19344 |
f (deg) | 176.21225 | 176.66212 | 231.51759 |
Thrust Drop Ratio | Algorithm Number | Terminal Deviation | Maximum Number of Iteration Steps | Flight Time Longer Than Optimal Solution (s) | |||
---|---|---|---|---|---|---|---|
e | i (deg) | Ω (deg) | w (deg) | ||||
2% | 0 | −3.36 × 10−6 | 1.67 × 10−5 | −1.24 × 10−5 | 0.037 | 7 | 0.002 |
1 | −3.35 × 10−6 | 1.67 × 10−5 | −1.24 × 10−5 | 0.036 | 11 | 0.002 | |
2 | −8.10 × 10−6 | 1.05 × 10−4 | −7.77 × 10−5 | 0.128 | 7 | 0.015 | |
3 | −2.61 × 10−6 | 1.45 × 10−5 | −1.07 × 10−5 | 0.038 | 7 | 0.001 | |
4 | −2.65 × 10−6 | 1.38 × 10−5 | −1.02 × 10−5 | 0.038 | 6 | 0.001 | |
9% | 0 | −3.87 × 10−6 | 4.27 × 10−5 | −2.92 × 10−5 | 0.045 | 9 | 0.002 |
1 | −3.86 × 10−6 | 4.26 × 10−5 | −2.91 × 10−5 | 0.044 | 560 | 0.002 | |
2 | −9.32 × 10−6 | 1.23 × 10−4 | −8.37 × 10−5 | 0.149 | 8 | 0.029 | |
3 | 2.89 × 10−6 | 3.69 × 10−5 | −2.52 × 10−5 | 0.045 | 9 | 0.001 | |
14% | 0 | −4.03 × 10−6 | 5.72 × 10−5 | −3.62 × 10−5 | 0.055 | 11 | 0.003 |
2 | −1.04 × 10−5 | 1.29 × 10−4 | −8.18 × 10−5 | 0.158 | 7 | 0.052 | |
3 | −3.48 × 10−6 | 4.92 × 10−5 | −3.12 × 10−5 | 0.039 | 11 | 0.004 | |
34% | 0 | −5.70 × 10−6 | 8.91 × 10−5 | −3.13 × 10−5 | 0.067 | 17 | 0.002 |
3 | −4.00 × 10−6 | 6.37 × 10−5 | −2.24 × 10−5 | 0.036 | 114 | 0.155 | |
35% | 0 | −6.09 × 10−6 | 8.97 × 10−5 | −2.98 × 10−5 | 0.059 | 59 | 0.002 |
Thrust Drop Ratio | Algorithm Number | Terminal Deviation | Maximum Number of Iteration Steps | Flight Time Longer Than Optimal Solution (s) | |||
---|---|---|---|---|---|---|---|
e | i (deg) | Ω (deg) | w (deg) | ||||
1% | 0 | −8.67 × 10−7 | −3.11 × 10−5 | 2.33 × 10−5 | −0.001 | 9 | 0.024 |
1 | −9.83 × 10−6 | 1.85 × 10−4 | 1.44 × 10−4 | 0.170 | 15 | 0.030 | |
2 | −6.18 × 10−6 | 6.94 × 10−5 | −5.24 × 10−5 | 0.107 | 9 | 0.109 | |
3 | −2.87 × 10−7 | 4.57 × 10−5 | −3.42 × 10−5 | −0.019 | 9 | 0.002 | |
4 | −2.30 × 10−6 | 4.74 × 10−6 | −3.65 × 10−6 | 0.030 | 146 | 0.014 | |
11% | 0 | −9.76 × 10−7 | 5.32 × 10−6 | 3.81 × 10−6 | −0.003 | 10 | 0.042 |
1 | −1.21 × 10−5 | 1.65 × 10−4 | 1.19 × 10−4 | 0.189 | 118 | 0.049 | |
2 | −8.19 × 10−6 | 8.69 × 10−5 | −6.05 × 10−5 | 0.131 | 10 | 0.215 | |
3 | 8.48 × 10−7 | −1.40 × 10−5 | 9.66 × 10−6 | −0.018 | 10 | 0.002 | |
49% | 0 | −6.20 × 10−6 | 1.75 × 10−4 | −3.16 × 10−5 | −0.046 | 21 | 0.374 |
2 | 3.32 × 10−5 | 2.72 × 10−4 | −4.06 × 10−5 | −0.308 | 31 | 10.525 | |
3 | 3.62 × 10−6 | 1.51 × 10−4 | −2.78 × 10−5 | −0.039 | 21 | 0.572 | |
51% | 0 | −7.14 × 10−6 | 1.87 × 10−4 | −2.16 × 10−5 | 0.052 | 21 | 0.384 |
2 | −4.39 × 10−5 | 3.99 × 10−4 | −2.87 × 10−5 | −0.373 | 22 | 14.849 | |
55% | 0 | −9.81 × 10−6 | 2.18 × 10−4 | 1.17 × 10−5 | 0.065 | 73 | 0.273 |
Deviation Term | 3σ Value in Phase 1 | 3σ Value in Phase 3 |
---|---|---|
Initial position (km) | (20, 10, 5) | - |
Initial velocity (m/s) | (100, 50, 20) | - |
Specific impulse (m/s) | 15 | 15 |
Deviation ratio of fuel mass flow rate | 3% | 3% |
Deviation ratio of fuel mass | 0.5% | 0.5% |
Deviation ratio of structure mass | 1% | 1% |
Deviation Term of Orbital Elements | Mean | Standard Deviation |
---|---|---|
a (m) | 2.821 | 1.578 |
e | 1.406 × 10−6 | 3.310 × 10−6 |
i (deg) | 7.223 × 10−5 | 7.138 × 10−5 |
Ω (deg) | 5.449 × 10−5 | 5.468 × 10−5 |
w (deg) | −3.558 × 10−2 | −5.712 × 10−2 |
f (deg) | 7.378 × 10−4 | 0.6983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Wang, C.; Xu, Z.; Tang, S.; Ma, Y. Damped Iterative Explicit Guidance for Multistage Rockets with Thrust Drop Faults. Aerospace 2025, 12, 61. https://doi.org/10.3390/aerospace12010061
Ma Z, Wang C, Xu Z, Tang S, Ma Y. Damped Iterative Explicit Guidance for Multistage Rockets with Thrust Drop Faults. Aerospace. 2025; 12(1):61. https://doi.org/10.3390/aerospace12010061
Chicago/Turabian StyleMa, Zongzhan, Chuankui Wang, Zhi Xu, Shuo Tang, and Ying Ma. 2025. "Damped Iterative Explicit Guidance for Multistage Rockets with Thrust Drop Faults" Aerospace 12, no. 1: 61. https://doi.org/10.3390/aerospace12010061
APA StyleMa, Z., Wang, C., Xu, Z., Tang, S., & Ma, Y. (2025). Damped Iterative Explicit Guidance for Multistage Rockets with Thrust Drop Faults. Aerospace, 12(1), 61. https://doi.org/10.3390/aerospace12010061