A Trajectory Prediction Method for Reentry Glide Vehicles via Adaptive Cost Function
Abstract
:1. Introduction
- Classify the guidance tasks of vehicles and provide judgment criteria, which solves the problem of method failure caused by traditional trajectory prediction methods not distinguishing between vehicle guidance tasks.
- The intention cost functions with adaptive cost coefficients have been proposed. Unlike the existing approaches in [27,28,29], which use fixed cost coefficients, the proposed intention cost function, tailored to guidance tasks, can comprehensively consider the vehicle’s maneuverability and battlefield situations, thereby enhancing the universal applicability of the cost function.
- Based on Bayesian theory, the maximum posterior probability attack intention and parameter model are inferred, effectively reducing error accumulation during the prediction process and significantly improving the algorithm’s runtime. This meets the defense side’s requirements for medium- to long-term high-precision trajectory prediction.
2. RGV Motion Model
3. Predictive Model Sets for Task Matching
3.1. The Judgement of the Vehicle’s Guidance Task
3.2. Predictive Model Set Construction
3.2.1. Predictive Model Set for Conventional Guidance
- (1)
- Longitudinal parameters
- (2)
- Lateral parameters
3.2.2. Predictive Model Set for Avoiding a No-Fly Zone
- (1)
- Longitudinal parameters
- (2)
- Lateral parameters
4. RGV Trajectory Prediction
4.1. Intention Cost Function Construction
4.1.1. Intention Cost Function for Conventional Guidance
4.1.2. Intention Cost Function for Avoiding the No-Fly Zone
- (1)
- Avoidance angle cost
- (2)
- Guidance angle cost
4.2. Inference of Vehicle Intention and Parameter Model via the Adaptive Cost Function
4.2.1. Inference of Parameter Model
4.2.2. Inference of Attack Intention
4.3. RGV Trajectory Prediction Process
5. Simulations
5.1. Case 1
5.2. Case 2
6. Conclusions
- (1)
- The vehicle guidance tasks were divided, and the task-matched set of time-varying parameter prediction models was constructed. This reduced the redundancy of the lateral parameter model and ensured the fast implementation of the prediction algorithm.
- (2)
- In consideration of the vehicle’s maneuvering capability, guidance intention, and battlefield situation, the proposed intention cost functions with adaptive cost coefficients improved the accuracy of guidance intention cost estimation.
- (3)
- The attack intent and parameter prediction model of the vehicle were inferred based on Bayesian theory and the maximum a posteriori probability, which reduced the error accumulation in the prediction process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Definition |
, , , , , | the state of reentry glide vehicles |
, | the mass and reference area of reentry glide vehicles |
the self-rotation angular rate of the Earth | |
, | the aerodynamic lift and drag forces |
, | the lift coefficient and drag coefficient |
, , | the control variables for reentry glide vehicles |
, , | the non-gravitational accelerations in the ENU coordinate system |
, | two guidance tasks: avoiding the no-fly zone and conventional guidance |
, | the edges of the instantaneous turning circle when the sign of the bank angle is positive and negative, respectively |
the edges of the no-fly zone | |
, | the minimum and the maximum heading angle from the vehicle to the no-fly zone boundary |
, | the heading angle and the range-to-go from the vehicle to the center of the no-fly zone |
, | the latitude and longitude of the center of the no-fly zone |
the radius of the no-fly zone | |
the instantaneous turning radius of reentry glide vehicles | |
the center distance between the instantaneous turning circle and the no-fly zone | |
, | the latitude and longitude of the instantaneous turning circle of the vehicle |
the control parameter model | |
the estimated control parameter model | |
the fitted control parameter model | |
the predictive control parameter model | |
the possible values of the predicted values of the control parameter model | |
the standard deviations of | |
the standard deviations of | |
the standard deviations of | |
, , | the random numbers satisfying the standard normal distribution |
the total step length of the tracking segment | |
the scale factor | |
the range of the vehicle’s original heading angle corridor | |
, | the revised heading angle corridor upper and lower bounds |
the heading angle from the vehicle to the intention to attack | |
the parameter prediction model set | |
the parameter prediction model | |
the discrete estimated parameter model during tracking phase | |
the discrete fitted parameter model during tracking phase | |
, | the weights and the normalized weights of sampling points |
a random number within | |
the intention cost function for conventional guidance | |
, | the planning speed and the planning range-to-go of the vehicle |
the range-to-go of the vehicle to the intent to attack | |
the latitude and longitude of the intent to attack | |
the range-to-go of the vehicle under equilibrium gliding condition | |
the lift–drag ratio | |
the intention cost function for avoiding the no-fly zone | |
, | the avoidance cost coefficient and the guidance cost coefficient |
, | the avoidance angle cost and the guidance angle cost |
the bank angle required for the vehicle’s instantaneous turning circle and no-fly zone tangent | |
the bank angle amplitude at the previous moment | |
the center distance between the instantaneous turning circle and the no-fly zone. | |
the integrated intention cost of avoiding the no-fly zone | |
the state of the vehicle obtained by the defense through the detection device and filtering algorithm | |
the time instant | |
attack intention | |
the likelihood probability of state transfer under parameter prediction model and attack intention | |
the posterior probabilities of the parametric model | |
the posterior probability of the parameter model at the previous moment in time | |
the likelihood probability of the intention | |
the posterior probability of the intention | |
the posterior probability of the intention at the previous moment | |
the conditional probability of one-step prediction for the vehicle | |
the collection of all intentions |
References
- Shen, Z.; Lu, P. Onboard Generation of Three-Dimensional Constrained Entry Trajectories. J. Guid. Control Dyn. 2003, 26, 111–121. [Google Scholar] [CrossRef]
- Lu, P.; Xue, S. Rapid Generation of Accurate Entry Landing Footprints. J. Guid. Control Dyn. 2010, 33, 756–767. [Google Scholar] [CrossRef]
- Zhang, R.; Li, H.; Zhang, R. Linear near-equilibrium glide model for unpowered entry trajectory control. Aerosp. Sci. Technol. 2017, 70, 526–533. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. Survey of Maneuvering Target Tracking. Part II: Motion Models of Ballistic and Space Targets. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 96–119. [Google Scholar] [CrossRef]
- Xue, X.; Huang, S.; Wei, D. An adaptive multivariate Student’s t-process recursive method for hypersonic glide vehicle trajectory prediction. IET Radar Sonar Navig. 2023, 17, 1061–1077. [Google Scholar] [CrossRef]
- Liu, T.; Yong, E.; Zhai, D. A Review of the Key Technologies of Trajectory Prediction of Intercepting Hypersonic Vehicles. Aerosp. Control 2021, 39, 13–21. [Google Scholar] [CrossRef]
- Li, F.; Xiong, J.; Lan, X.; Bi, H.; Chen, X. NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition. J. Syst. Eng. Electron. 2021, 32, 103–117. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Jiang, X.; Wang, Z.; Qin, S.; Lai, J. Uncertain trajectory prediction for hypersonic flight vehicles based on Gaussian process regression. Aerosp. Technol. 2022, 4, 49–61. [Google Scholar]
- Zhang, C.; Dang, S.; Shihada, B.; Alouini, M.S. Dual attention-based federated learning for wireless traffic prediction. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021. [Google Scholar] [CrossRef]
- Fu, M.; Shi, Y.; Zhou, Y. Federated learning via unmanned aerial vehicle. IEEE Trans. Wirel. Commun. 2023, 23, 2884–2900. [Google Scholar] [CrossRef]
- Hou, X.; Wang, J.; Jiang, C.; Meng, Z.; Chen, J.; Ren, Y. Efficient federated learning for metaverse via dynamic user selection, gradient quantization and resource allocation. IEEE J. Sel. Areas Commun. 2023, 42, 850–866. [Google Scholar] [CrossRef]
- Yang, C.; Liu, B.; Wang, J.; Shao, J.; Han, Z. LSTM intelligent trajectory prediction for hypersonic vehicles based on attention mechanism. Acta Armamentarii 2022, 43, 78–86. [Google Scholar]
- Ren, J.; Wu, X.; Liu, Y.; Ni, F.; Bo, Y.; Jiang, C. Long-Term Trajectory Prediction of Hypersonic Glide Vehicle Based on Physics-Informed Transformer. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9551–9561. [Google Scholar] [CrossRef]
- Han, C.; Xiong, J.; Zhang, K. Method of trajectory prediction for unpowered gliding hypersonic vehicle. Mod. Def. Technol. 2018, 46, 146–151. [Google Scholar]
- Wang, L.; Xing, Q.; Mao, Y. Trajectory prediction of reentry hypersonic glid glide vehicle based on changing rule of lift-drag ratio. Syst. Eng. Electron. 2015, 37, 2335–2340. [Google Scholar]
- Hu, Y.D.; Gao, C.S.; Li, J.L.; Jing, W.X. Maneuver mode analysis and parametric modeling for hypersonic glide vehicles. Aerosp. Sci. Technol. 2021, 119, 107166. [Google Scholar] [CrossRef]
- Li, S.; Lei, H.; Zhou, C.; Zhang, T. Trajectory prediction algorithm for hypersonic reentry gliding target based on control variables estimation. Syst. Eng. Electron. 2020, 42, 2320–2327. [Google Scholar]
- Li, M.; Zhou, C.; Lei, H.; Shao, L.; Luo, C. An intelligent trajectory prediction algorithm of reentry glide target based on control parameter estimation. Syst. Eng. Electron. 2023, 45, 221–233. [Google Scholar]
- Zhang, J.; Xiong, J.; Li, L.; Xi, Q.; Chen, X.; Li, F. Motion State Recognition and Trajectory Prediction of Hypersonic Glide Vehicle Based on Deep Learning. IEEE Access 2022, 10, 21095–21108. [Google Scholar] [CrossRef]
- Li, M.; Zhou, C.; Shao, L.; Lei, H.; Xu, J. An Intelligent Trajectory Prediction Algorithm for Hypersonic Glide Targets Based on Maneuver Mode Identification. Int. J. Aerosp. Eng. 2022, 2022, 4625001. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, L.; Yong, E.; Lou, T. Trajectory sequence prediction algorithm for hypersonic gliding target with variable maneuver. Aero Weapon. 2021, 28, 40–48. [Google Scholar]
- Wei, X.; Gu, L.; Li, R.; Wang, S. Trajectory tracking and prediction of hypersonic vehicle based on Singer model. Aerosp. Control 2017, 35, 62–66+72. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, C.; Yan, X. Trajectory prediction of hypersonic gliding vehicle based on SVM and EKF. J. Beijing Univ. Aeronaut. Astronaut. 2020, 46, 2094–2105. [Google Scholar]
- Sun, L.; Yang, B.; Ma, J. Trajectory prediction in pipeline form for intercepting hypersonic gliding vehicles based on LSTM. Chin. J. Aeronaut. 2023, 36, 421–433. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, X.S.; Wang, H.; Qu, Z. Method for predicting the attack intention of hypersonic vehicles. J. Xidian Univ. 2019, 46, 113–119. [Google Scholar]
- Cheng, Y.; Wei, C.; Wei, Y.; You, B.; Zhao, Y. Intention Prediction of a Hypersonic Glide Vehicle Using a Satellite Constellation Based on Deep Learning. Mathematics 2022, 10, 3754. [Google Scholar] [CrossRef]
- Zhang, K.; Xiong, J.; Li, F.; Fu, T. Bayesian trajectory prediction for a hypersonic gliding reentry vehicle based on intent Inference. J. Astronaut. 2018, 39, 1258–1265. [Google Scholar]
- Hu, Y.D.; Gao, C.S.; Li, J.L.; Jing, W.X.; Li, Z. Novel trajectory prediction algorithms for hypersonic gliding vehicles based on maneuver mode on-line identification and intent inference. Meas. Sci. Technol. 2021, 32, 115012. [Google Scholar] [CrossRef]
- Li, J.L.; Guo, J.; Tang, S.J. Trajectory prediction based on multi-model and multi-intent fusion for hypersonic gliding targets. J. Astronaut. 2024, 45, 167–180. [Google Scholar]
- Xu, J.; Dong, C.; Cheng, L. Deep Neural Network-Based Footprint Prediction and Attack Intention Inference of Hypersonic Glide Vehicles. Mathematics 2022, 11, 185. [Google Scholar] [CrossRef]
- He, Y.C.; Jiong, L.; SHAO, L.; Bu, X.W.; Zhang, J.; Boyang, J. Reentry target tracking algorithm based on improved "current" statistical model. Acta Aeronaut. Astronaut. Sin. 2024, 45, 730800. [Google Scholar]
- Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans. Autom. Control 2000, 45, 477–482. [Google Scholar] [CrossRef]
- Wang, Q.; Mo, H.; Wu, Z.; Dong, C. Predictive reentry guidance for hypersonic vehicles considering no-fly zone. J. Harbin Inst. Technol. 2015, 47, 104–109. [Google Scholar]
- Phillips, T.H. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide; Schafer Corporation For AFRL and AFSPC: Arlington, VA, USA, 2003; pp. 1–12. [Google Scholar]
- Lu, P. Entry Guidance: A Unified Method. J. Guid. Control Dyn. 2014, 37, 713–728. [Google Scholar] [CrossRef]
- Shen, Z.; Lu, P. Dynamic Lateral Entry Guidance Logic. J. Guid. Control Dyn. 2004, 27, 949–959. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, S.; Li, Q.; Ren, Z. Lateral entry guidance with no-fly zone constraint. Aerosp. Sci. Technol. 2017, 60, 39–47. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, Y.; Guo, T.; Wu, H. Discussion of two algorithms for generating landing footprint for lifting reentry vehicles. Aerosp. Control 2015, 33, 39–43. [Google Scholar] [CrossRef]
Causality | Case 1 | Case 2 | Radius/(°) | ||
---|---|---|---|---|---|
Longitude/(°) | Latitude/(°) | Longitude/(°) | Latitude/(°) | ||
Target 1 | 15 | 18 | 15 | 18 | - |
Target 2 | 30 | 25 | 30 | 25 | - |
Target 3 | 35 | 15 | 24 | 20 | - |
No-fly zone 1 | 15 | 11 | 15 | 11 | 2 |
No-fly zone 2 | 25 | 14 | 11 | 17 | 2 |
Method | ||||||
---|---|---|---|---|---|---|
Target 1 | Target 2 | Target 3 | Target 1 | Target 2 | Target 3 | |
Method 2 | 0 | 50.24% | 49.76% | 0 | 100.00% | 0 |
Method 3 | 0 | 6.15% | 93.85% | 0 | 100.00% | 0 |
Method 4 | 0 | 99.99% | 0.01% | 0 | 100.00% | 0 |
Predicted Start Time | Method | Longitudinal Error/(km) | Latitudinal Error/(km) | Skyward Error/(km) | Overall Error/(km) | Prediction Time/(s) |
---|---|---|---|---|---|---|
Method 1 | 6.89 | −12.44 | 1.86 | 14.34 | 2.37 | |
Method 2 | −26.36 | 37.69 | 5.45 | 46.32 | 8.56 | |
Method 3 | 46.23 | −58.89 | 0.55 | 74.87 | 0.90 | |
Method 4 | 4.65 | −2.71 | 0.98 | 5.47 | 0.28 | |
Method 1 | −18.23 | 15.22 | −1.65 | 23.80 | 2.37 | |
Method 2 | 33.40 | 5.33 | 7.88 | 34.73 | 5.98 | |
Method 3 | 15.50 | −4.29 | −5.25 | 16.92 | 0.61 | |
Method 4 | 7.98 | 9.87 | −4.78 | 13.56 | 0.35 |
Method | ||||||
---|---|---|---|---|---|---|
Target 1 | Target 2 | Target 3 | Target 1 | Target 2 | Target 3 | |
Method 2 | 0 | 50.35% | 49.65% | 0 | 100.00% | 0 |
Method 3 | 0 | 0.01% | 99.99% | 0 | 100.00% | 0 |
Method 4 | 0 | 99.99% | 0.01% | 0 | 100.00% | 0 |
Predicted Start Time | Method | Longitudinal Error/(km) | Latitudinal Error/(km) | Skyward Error/(km) | Overall Error/(km) | Prediction Time/(s) |
---|---|---|---|---|---|---|
Method 1 | −14.51 | 12.90 | 1.71 | 19.49 | 2.33 | |
Method 2 | −79.02 | 67.54 | −0.69 | 103.96 | 10.20 | |
Method 3 | −21.35 | 20.10 | −0.25 | 29.32 | 1.05 | |
Method 4 | 0.52 | 2.12 | −0.25 | 2.27 | 0.33 | |
Method 1 | 33.84 | −26.45 | 3.62 | 43.10 | 2.43 | |
Method 2 | −64.75 | 42.42 | 6.14 | 77.65 | 14.97 | |
Method 3 | 27.56 | −23.36 | 1.11 | 36.14 | 0.54 | |
Method 4 | 4.19 | −5.31 | 1.35 | 6.90 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Li, J.; Shao, L.; Zhou, C.; Bu, X. A Trajectory Prediction Method for Reentry Glide Vehicles via Adaptive Cost Function. Aerospace 2025, 12, 62. https://doi.org/10.3390/aerospace12010062
He Y, Li J, Shao L, Zhou C, Bu X. A Trajectory Prediction Method for Reentry Glide Vehicles via Adaptive Cost Function. Aerospace. 2025; 12(1):62. https://doi.org/10.3390/aerospace12010062
Chicago/Turabian StyleHe, Yangchao, Jiong Li, Lei Shao, Chijun Zhou, and Xiangwei Bu. 2025. "A Trajectory Prediction Method for Reentry Glide Vehicles via Adaptive Cost Function" Aerospace 12, no. 1: 62. https://doi.org/10.3390/aerospace12010062
APA StyleHe, Y., Li, J., Shao, L., Zhou, C., & Bu, X. (2025). A Trajectory Prediction Method for Reentry Glide Vehicles via Adaptive Cost Function. Aerospace, 12(1), 62. https://doi.org/10.3390/aerospace12010062