Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preprocessing and Analysis
2.1.1. Encoding Data
2.1.2. Simple Statistical Analysis and Correlation Coefficient Analysis
2.1.3. Using Stepping to Simulate the Data Links to Augment Data
2.1.4. Normalization
2.1.5. Data Training and Cross-Validation
2.2. Using Machine Learning for Classification (Experiment 1)
2.2.1. Kernel Functions of the SVM
2.2.2. Similarity Function of KNN
2.3. Using the FNN for Damage Prediction (Experiment 2)
2.4. Building Point Cloud and 3D Matrix (Experiment 3)
3. Results
3.1. Experiment 1: Machine Learning Recognition—Different Kinds of Damage
3.1.1. Presentation of Different Models’ Classification Performance
3.1.2. Using Curve Fitting to Analyze the Mechanism of Damage Recognition
3.1.3. Performance Validation of the Classifier
3.2. Experiment 2: The AI Prediction Solution of Aviation
3.2.1. Performance of Model Learning Ability—Loss Function
3.2.2. Prediction Results and Assignments
3.3. Experiment 3: The Simulation Solution of Aerostructure Surface Damage
3.3.1. Machine Learning Predicted Result—Guided 3D Damage Simulation
3.3.2. Machine Learning Predicted Result—Guided Aerostructure Surface Damage Reconstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, M.; Wang, H. Digital twin applications in aviation industry: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 5677–5692. [Google Scholar] [CrossRef]
- Hartwell, A.; Montana, F.; Jacobs, W.; Kadirkamanathan, V.; Ameri, N.; Mills, A.R. Distributed digital twins for health monitoring: Resource constrained aero-engine fleet management. Aeronaut. J. 2024, 128, 1556–1575. [Google Scholar] [CrossRef]
- Hofmann, S.; Duhovnikov, S.; Schupke, D. Massive data transfer from and to aircraft on ground: Feasibility and challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 6–14. [Google Scholar] [CrossRef]
- Badea, V.; Zamfroiu, A.; Boncea, R. Big Data in the Aero space Industry. Inform. Econ. 2018, 22, 17–24. [Google Scholar]
- Qi, Q.; Tuegel, E. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Mabkhot, M.; Al-Ahmari, A.; Salah, B.; Alkhalefah, H. Requirements of the smart factory system: A survey and perspective. Machines 2018, 6, 23. [Google Scholar] [CrossRef]
- Phanden, R.K.; Sharma, P.; Dubey, A. A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater. Today Proc. 2020, 38, 174–178. [Google Scholar] [CrossRef]
- Zaccaria, V.; Stenfelt, M.; Aslanidou, I.; Kyprianidis, K.G. Fleet Monitoring and Diagnostics Framework based on Digital Twin of Aero-Engines. In Proceedings of the ASME Turbo Expo, Oslo, Norway, 11–15 June 2018. [Google Scholar] [CrossRef]
- Depold, H.R.; Siegel, J. Using diagnostics and prognostics to minimize the cost of ownership of gas turbines. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 8–11 May 2006. Paper number GT2006-91183. [Google Scholar]
- Gorinevsky, D.; Matthews, B.; Martin, R. Aircraft Anomaly Detection using Performance Models Trained on Fleet Data. In Proceedings of the 2012 Conference on Intelligent Data Understanding, Boulder, CO, USA, 24–26 October 2012. [Google Scholar] [CrossRef]
- Li, L.; Gariel, M.; Hansman, R.J.; Palacios, R. Anomaly detection in onboard-recorded flight data using cluster analysis. In Proceedings of the 30th IEEE/AIAA Digital Avionics Systems Conference (DASC), Seattle, WA, USA, 16–20 October 2011; pp. 4A4-1–4A4-11. [Google Scholar] [CrossRef]
- Uzun, M.; Demirezen, M.U.; Koyuncu, E.; Inalhan, G. Design of a Hybrid Digital-Twin Flight Performance Model Through Machine Learning. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Khadilkar, H.; Balakrishnan, H. Estimation of aircraft taxi fuel burn using flight data recorder archives. Transp. Res. Part D Transp. Environ. 2012, 17, 532–537. [Google Scholar] [CrossRef]
- Chati, Y.S.; Balakrishnan, H. A Gaussian process regression approach to model aircraft engine fuel flow rate. In Proceedings of the 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), Pittsburgh, PA, USA, 18–21 April 2017; pp. 131–140. [Google Scholar] [CrossRef]
- Li, L.; Aslam, S.; Wileman, A.; Perinpanayagam, S. Digital Twin in Aerospace Industry: A Gentle Introduction. IEEE Access 2022, 10, 9543–9562. [Google Scholar] [CrossRef]
- King, S.P.; Mills, A.R.; Kadirkamanathan, V. Equipment Health Monitoring in Complex Systems; Artech House: London, UK, 2017; ISBN 1630814970/9781630814977. [Google Scholar]
- Zhou, L.; Wang, H.; Xu, S. Aero-engine gas path system health assessment based on depth digital twin. Eng. Fail. Anal. 2022, 142, 106790. [Google Scholar] [CrossRef]
- Li, J.; Zhao, G.; Zhang, P.; Xu, M.; Cheng, H.; Han, P. A Digital Twin-based on-site quality assessment method for aero-engine assembly. J. Manuf. Syst. 2023, 71, 565–580. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, J.; Sun, G.; Wu, T.; Yu, L.; Zhao, X. A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis. Energy 2023, 270, 126894. [Google Scholar] [CrossRef]
- Sun, R.; Shi, L.; Yang, X.; Wang, Y.; Zhao, Q. A coupling diagnosis method of sensors faults in gas turbine control system. Energy 2020, 205, 117999. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, G.; Tao, J.; Hu, Y.; Yuan, L. A modified fusion model-based/data-driven model for sensor fault diagnosis and performance degradation estimation of aero-engine. Meas. Sci.Technol. 2022, 33, 85105. [Google Scholar] [CrossRef]
- Tadepalli, N.V.R.S.; Koona, R. Gas turbine aero engine fault detection using Geo-TLSVM and digital twin with multimodal data analysis. Eng. Res. Express 2024, 6, 15523. [Google Scholar] [CrossRef]
- Stevens, R. Digital Twin for Spacecraft Concepts. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, S.J.; Kim, M.A.; Lee, M.J.; Lim, S.C.; Cho, K.W. Development of a Digital Twin Pipeline for Interactive Scientific Simulation and Mixed Reality Visualization. IEEE Access 2023, 11, 100907–100918. [Google Scholar] [CrossRef]
- McClellan, A.; Lorenzetti, J.; Pavone, M.; Farhat, C. A physics-based digital twin for model predictive control of autonomous unmanned aerial vehicle landing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2022, 380, 20210204. [Google Scholar] [CrossRef]
- Fawke, A.J.; Saravanamuttoo, H.I.H. Digital computer simulation of the dynamic response of a twin-spool turbofan with mixed exhausts. Aeronaut. J. 1973, 77, 471–478. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, H.; Fu, Q.; Xu, Y. Digital twin–driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol. 2021, 114, 3751–3761. [Google Scholar] [CrossRef]
- Baur, M.; Albertelli, P.; Monno, M. A review of prognostics and health management of machine tools. Int. J. Adv. Manuf. Technol. 2020, 107, 2843–2863. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Digital twin driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Daily, J.; Peterson, J.; Walther, J.; Richter, K.; Walther, J.; Richter, K. Predictive maintenance: How big data analysis Can improve maintenance. In Supply Chain Integration Challenges in Commercial Aerospace; Richter, K., Walther, J., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lee, J.; Wang, H. New technologies for maintenance. In Complex System Maintenance Handbook; Springer Series in Reliability Engineering; Springer: London, UK, 2008. [Google Scholar] [CrossRef]
- Ghorbani, H.; Khameneifar, F. Construction of damage-free digital twin of damaged aero-engine blades for repair volume generation in remanufacturing. Robot. Comput.-Integr. Manuf. 2022, 77, 102335. [Google Scholar] [CrossRef]
- Xu, C.; Gui, X.; Zhao, Y. Digital Twin-Assisted Multiview Reconstruction Enhanced Domain Adaptation Graph Networks for Aero-Engine Gas Path Fault Diagnosis. IEEE Sens. J. 2024, 24, 21694–21705. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P. Beta-band oscillations-signalling the status quo? Curr. Opin. Neurobiol. 2010, 20, 156–165. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Tang, Y.; Du, Y. An integrated approach of reverse engineering aided remanufacturing process for worn components. Robot. Comput.-Integr. Manuf. 2017, 48, 39–50. [Google Scholar] [CrossRef]
- Wilson, J.M.; Piya, C.; Shin, Y.C.; Zhao, F.; Ramani, K. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 2014, 80, 170–178. [Google Scholar] [CrossRef]
- Su, C.; Han, Y.; Tang, X.; Jiang, Q.; Wang, T.; He, Q. Knowledge-based digital twin system: Using a knowlege-driven approach for manufacturing process modeling. Comput. Ind. 2024, 159–160, 104101. [Google Scholar] [CrossRef]
- Su, C.; Jiang, X.; Huo, G.; Zou, Q.; Zheng, Z.; Feng, H.-Y. Accurate model construction of deformed aero-engine blades for remanufacturing. Int. J. Adv. Manuf. Technol. 2020, 106, 3239–3251. [Google Scholar] [CrossRef]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Khameneifar, F.; Feng, H.-Y. Establishing a balanced neighborhood of discrete points for local quadric surface fitting. Comput. Aided Des. 2017, 84, 25–38. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Z.; Chen, X. Worn area modeling for automating the repair of turbine blades. Int. J. Adv. Manuf. Technol. 2006, 29, 1062–1067. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, W.; Liou, F. Voxel-Based Geometry Reconstruction for Repairing and Remanufacturing of Metallic Components Via Additive Manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 1663–1686. [Google Scholar] [CrossRef]
- Martinsson, J.; Panarotto, M.; Kokkolaras, M.; Isaksson, O. Exploring the potential of digital twin-driven design of aero-engine structures. In Proceedings of the Development of Efficient DIgital Product FAMily Design Platform to Increase Cost Efficiency-DIFAM, Gothenburg, Sweden, 16–20 August 2021; Volume 1, pp. 1521–1528. [Google Scholar] [CrossRef]
- Gao, J.; Chen, X.; Yilmaz, O.; Gindy, N. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int. J. Adv. Manuf. Technol. 2008, 36, 1170–1179. [Google Scholar] [CrossRef]
- Yilmaz, O.; Gindy, N.; Gao, J. A repair and overhaul methodology for aeroengine components. Robot. Comput.-Integr. Manuf. 2010, 26, 190–201. [Google Scholar] [CrossRef]
- Praniewicz, M.; Kurfess, T.; Saldana, C. An Adaptive Geometry Transformation and Repair Method for Hybrid Manufacturing. J. Manuf. Sci. Eng. 2019, 141, 0110061. [Google Scholar] [CrossRef]
- Yan, C.; Wan, W.; Huang, K.; Liu, L.; Lee, C.-H. A reconstruction strategy based on CSC registration for turbine blades repairing. Robot. Comput.-Integr. Manuf. 2020, 61, 101835. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, H.; Wang, J.; Zhang, Y. Geometric model reconstruction and CNC machining for damaged blade repair. Int. J. Comput. Integr. Manuf. 2020, 33, 287–301. [Google Scholar] [CrossRef]
- Selvarajan, S.; Manoharan, H.; Shankar, A.; Khadidos, A.O.; Khadidos, A.O.; Galletta, A. PUDT: Plummeting uncertainties in digital twins for aerospace applications using deep learning algorithms. Future Gener. Comput. Syst. 2024, 153, 575–586. [Google Scholar] [CrossRef]
- Fotland, G.; Haskins, C.; Rølvåg, T. Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels. Syst. Eng. 2020, 23, 177–188. [Google Scholar] [CrossRef]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Terkaj, W.; Gaboardi, P.; Trevisan, C.; Tolio, T.; Urgo, M. A digital factory platform for the design of roll shop plants. CIRP J. Manuf. Sci. Technol. 2019, 26, 88–93. [Google Scholar] [CrossRef]
- Coronado, P.D.U.; Lynn, R.; Louhichi, W.; Parto, M.; Wescoat, E.; Kurfess, T. Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 2018, 48, 25–33. [Google Scholar] [CrossRef]
- Zhuang, C.; Liu, J.; Xiong, H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int. J. Adv. Manuf. Technol. 2018, 96, 1149–1163. [Google Scholar] [CrossRef]
- Bilberg, A.; Malik, A.A. Digital twin driven human–robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Burnett, M. Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J. Manuf. Syst. 2020, 56, 598–604. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Eng. 2019, 186, 106063. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Glaessgen Edward, H.; Stargel, D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; p. 1818. Available online: https://ntrs.nasa.gov/search.jsp?R=20120008178 (accessed on 3 December 2024).
ATA | Zone | Aircraft | Parts | Location | Damage Type | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fuselage | 53 | Fuselage lower | 100 | LH | 1 | AFT | 1 | 0–9999 | Others | 1 |
Doors | 52 | Fuselage top | 200 | RH | 2 | FWD | 2 | Dent | 2 | |
Wings | 57 | Doors | 800 | Fairing | 3 | |||||
Nacelles | 54 | Left wing | 500 | Upper | 4 | |||||
Stabilizers | 55 | Right wing | 600 | Lower | 5 | |||||
Stabilizers | 300 | LH | 6 | |||||||
RH | 7 | |||||||||
Vertical | 8 | |||||||||
Horizontal lower | 9 | |||||||||
Horizontal upper | 10 |
Area | Standard Error | Asymptotic Prob | 95% LCL | 95% UCL | |
---|---|---|---|---|---|
SVM | 0.88699 | 0.04975 | <0.0001 | 0.78949 | 0.9845 |
KNN | 0.87755 | 0.07862 | 6.73542 × 10−4 | 0.72347 | 1.03164 |
Location | Alpha 1 | Charlie 2 | Bravo 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Trues | Predict | ACC | Trues | Predict | ACC | Trues | Predict | ACC | |
LH-wings-upper | −0.08 | −0.07 | 0.90 | −0.15 | −0.19 | 0.79 | −0.26 | −0.31 | 0.84 |
LH-wings-lower | −0.08 | −0.08 | 0.99 | −0.15 | −0.19 | 0.82 | −0.26 | −0.27 | 0.95 |
RH-wings-upper | −0.08 | −0.10 | 0.77 | −0.15 | −0.20 | 0.76 | −0.26 | −0.26 | 0.99 |
RH-wings-lower | −0.08 | −0.06 | 0.80 | −0.15 | −0.15 | 0.99 | −0.26 | −0.27 | 0.961 |
LH-fuselage-FWD | −0.08 | −0.06 | 0.79 | −0.15 | −0.15 | 0.98 | −0.26 | −0.28 | 0.92 |
LH-fuselage-AFT | −0.08 | −0.06 | 0.77 | −0.15 | −0.16 | 0.98 | |||
RH-fuselage-FWD | −0.15 | −0.16 | 0.98 | ||||||
RH-fuselage-AFT | −0.08 | −0.07 | 0.89 | −0.15 | −0.12 | 0.81 | −0.26 | −0.28 | 0.94 |
RH-door-AFT | −0.15 | −0.17 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Tang, H.P.; Mannion, A.; Voyle, R.; Xin, Y. Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction. Aerospace 2025, 12, 72. https://doi.org/10.3390/aerospace12010072
Wu Y, Tang HP, Mannion A, Voyle R, Xin Y. Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction. Aerospace. 2025; 12(1):72. https://doi.org/10.3390/aerospace12010072
Chicago/Turabian StyleWu, Yijia, Hon Ping Tang, Anthony Mannion, Robert Voyle, and Ying Xin. 2025. "Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction" Aerospace 12, no. 1: 72. https://doi.org/10.3390/aerospace12010072
APA StyleWu, Y., Tang, H. P., Mannion, A., Voyle, R., & Xin, Y. (2025). Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction. Aerospace, 12(1), 72. https://doi.org/10.3390/aerospace12010072