Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Design
2.2. Heat Radiation Sources
2.3. Model Implementation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corpino, S.; Caldera, M.; Nichele, F.; Masoero, M.; Viola, N. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronaut. 2015, 115, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Mehrparvar, A. Cubesat Design Specifications Rev. 13; California Polytechnic State University: San Luis Obispo, CA, USA; Stanford University: Stanford, CA, USA, 2014. [Google Scholar]
- Niaki, K.S.; Anvari, A.; Farhani, F. Aluminum and composite materials for satellite structures—A comparison of thermal performance. Mater. Sci. Res. India 2007, 4, 25–34. [Google Scholar] [CrossRef]
- Condruz, M.R.; Voicu, L.R.; Puscasu, C.; Vintila, I.S.; Sima, M.; Deaconu, M.; Dragasanu, L. Composite material designs for lightweight space packaging structures. INCAS Bull. 2018, 10, 13–25. [Google Scholar] [CrossRef]
- Ampatzoglou, A.; Baltopoulos, A.; Kotzakolios, A.; Kostopoulos, V. Qualification of Composite Structure for Cubesat Picosatellites as a Demonstration for Small Satellite Elements. IJASAR 2014, 1, 1–10. [Google Scholar] [CrossRef]
- Shemelya, C.; De la Rosa, A.; Torrado, A.R.; Yu, K.; Domanowski, J.; Bonacuse, P.J.; Martin, R.E.; Juhasz, M.; Hurwitz, F.; Wicker, R.B.; et al. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit. Manuf. 2017, 16, 186–196. [Google Scholar] [CrossRef]
- Marshall, W.M.; Zemba, M.; Shemelya, C.; Wicker, R.; Espalin, D.; MacDonald, E.; Keif, C.; Kwas, A. Using Additive Manufacturing to Print a CubeSat Propulsion System. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015. [Google Scholar]
- Borgeaud, M.; Scheidegger, N.; Noca, M.; Roerhlisberger, G.; Jordan, F.; Choueiri, T.; Steiner, N. SwissCube: The First Entirely-Built Swiss Student Satellite with an Earth Observation Payload. In Small Satellite Missions for Earth Observation; Sandau, R., Roeser, H.P., Valenzuela, A., Eds.; Springer: Berlin, Germany, 2010; pp. 207–213. ISBN 978-3-642-03501-2. [Google Scholar]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Garcia, P.; Ramirez-Aguilar, R.; Torres, M.; Franco-Urquiza, E.A.; May-Crespo, J.; Camacho, N. Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites. Polymer 2018, 153, 9–16. [Google Scholar] [CrossRef]
- Kang, S.J.; Oh, H.U. On-Orbit Thermal Design and Validation of 1U Standardized CubeSat of STEP Cube Lab. Int. J. Aerosp. Eng. 2016, 2016, 4213189. [Google Scholar] [CrossRef]
- Panczak, T.D.; Ring, S.G. RadCAD®: Next Generation Thermal Radiation Analyzer. SAE Int. 1997. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Subramanian, E.R. Transient thermal analysis of a nanosatellite in low earth orbit. In Proceedings of The Eighth International Conference on Engineering Computational Technology; Topping, B.H.V., Ed.; Civil-Comp Press: Stirlingshire, UK, 2012. [Google Scholar]
- Yoo, J.; Jin, H.; Seon, J.; Jeong, Y.H.; Glaser, D.; Lee, D.H.; Lin, R.P. Thermal Analysis of TRIO-CINEMA Mission. J. Astron. Space Sci. 2012, 29, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Kandelbauer, A. Cyanate Esters. In Handbook of Thermoset Plastics, 3rd ed.; Dodiuk, H., Goodman, S.H., Eds.; William Andrew Publishing: Boston, MA, USA, 2014; pp. 425–457. [Google Scholar]
- Toray Advanced Composites. Toray EX-1510 Cyanate Resin, Two Part System Data Sheet. Available online: https://www.toraytac.com/product-explorer/products/ntro/EX-1510 (accessed on 8 August 2019).
- FAR 25.853—Appendix F Part II. Fire Test to Aircraft Material—Flammability of Seat Cushions; Federal Aviation Administration, Department of Transportation: Washington, DC, USA, 2018.
- Sika-AXSON Corporation. EPOLAM 2500, Epoxy System FAR 25 Approved. Available online: https://advanced-resins.sika.com (accessed on 10 September 2018).
- Nakamura, S.; Fuji, T.; Matsukawa, S.; Katagiri, M.; Fukuyama, H. Specific heat, thermal conductivity, and magnetic susceptibility of cyanate-ester resins—An alternative to commonly used epoxy resins. Cryogenics 2018, 95, 76–81. [Google Scholar] [CrossRef]
- Toldy, A.; Szlancsik, A.; Szolnoki, B. Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites. Polym. Degrad. Stab. 2016, 128, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, B.; Yan, L. Transport of thermal energy in epoxy matrix composites reinforced with a hybrid carbon nanofiller. Results Phys. 2019, 14, 102363. [Google Scholar] [CrossRef]
- European Commission Directorate-General for Energy. Horizon 2020, EU Energy Trends to 2030. Climate Action DG and Mobility and Transport DG, 2020 Climate and Energy Package; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Torres, M.; Piedra, S.; Ledesma, S.; Perez, R.; Franco, J.A. Thermal and mechanical analysis of a Carbon-Epoxy laminates for CubeSat primary structures. In Proceedings of the 5th International Conference on Mechanics of Composites (MechComp 2019), Lisbon, Portugal, 1–4 July 2019. [Google Scholar]
- Patterson, B.A.; Sodano, H.A. Enhanced Interfacial Strength and UV Shielding of Aramid Fiber Composites through ZnO Nanoparticle Sizing. ACS Appl. Mater. Interfaces 2016, 8, 33963–33971. [Google Scholar] [CrossRef] [PubMed]
- Salla, J.; Pandey, K.K.; Srinivas, K. Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polym. Degrad. Stab. 2012, 97, 592–596. [Google Scholar] [CrossRef]
- Camacho, N.; May-Crespo, J.F.; Rojas-Trigos, J.B.; Mondragon-Rodriguez, G.C.; Martinez, K.; Marin, E. Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide composites. Polym. Test. 2019. Submitted. [Google Scholar]
- Sanchez-San Juan, S.; Gonzalez-Llorente, J.; Hurtado-Velasco, R. Comparison of the Incident Solar Energy and Battery Storage in a 3U CubeSat Satellite for Different Orientation Scenarios. J. Aerosp. Technol. Manag. 2016, 8, 91–102. [Google Scholar] [CrossRef] [Green Version]
- HEXCEL Corporation. HexTow AS4 Carbon fibre Datasheet; Hexcel Corporation: Stamford, CT, USA, 2016. [Google Scholar]
- Anderson, B.J.; Justus, C.J.; Batts, G.W. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design; NASA/TM-2001-211221; NASA: Huntsville, AL, USA, 2001.
- Jaques, L. Thermal Design of the OUFTI-1 Nanosatellite. Master’s Thesis, University of Liege, Liege, Belgium, 2009. [Google Scholar]
- Gilmore, D. Spacecraft Thermal Control Handbook, Volume 1: Fundamental Technologies; Aerospace Press: Reston, VA, USA, 2002. [Google Scholar]
- ANSYS Mechanical User’s Guide. Available online: https://www.sharcnet.ca/Software/Ansys/18.2.2/en-us/help/ai_sinfo/mech_intro.html (accessed on 25 January 2019).
- Dasgupta, A.; Agarwal, R.K. Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique. J. Compos. Mater. 1992, 26, 2736–2758. [Google Scholar] [CrossRef]
- Hubbard, J.A.; Brown, A.L.; Dodd, A.B.; Gomez-Vasquez, S.; Ramirez, C.J. Carbon Fiber Composite Characterization in Adverse Thermal Environments; SAND2011-2833; Sandia National Laboratories: Albuquerque, NM, USA, 2011.
Unit | Power Dissipation (W) | Operating Temperature Range (°C) | |
---|---|---|---|
EPS board | 0.1 | −40 | 85 |
Battery pack | 0.6 | −2060 | 60 |
GPS board | 0.27 | −40 | 85 |
Communication board | 0.27 | −30 | 60 |
Material | Thermal Conductivity (W/m K) | Heat Capacity (J/kg K) | Density (kg/m3) |
---|---|---|---|
Epolam 2500/ZnO 0.25 wt % | 0.4 | 1890 | 1210 |
Epolam 2500 | 0.35 | 1760 | 1210 |
AS4 Carbon Fibre | 6.83 | 1130 | 1790 |
Al 5052-H32 | 138 | 880 | 2680 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piedra, S.; Torres, M.; Ledesma, S. Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat. Aerospace 2019, 6, 97. https://doi.org/10.3390/aerospace6090097
Piedra S, Torres M, Ledesma S. Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat. Aerospace. 2019; 6(9):97. https://doi.org/10.3390/aerospace6090097
Chicago/Turabian StylePiedra, Saul, Mauricio Torres, and Saul Ledesma. 2019. "Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat" Aerospace 6, no. 9: 97. https://doi.org/10.3390/aerospace6090097
APA StylePiedra, S., Torres, M., & Ledesma, S. (2019). Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat. Aerospace, 6(9), 97. https://doi.org/10.3390/aerospace6090097