Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters
Abstract
:1. Introduction
2. Ion-Induced Electron Emission Mechanisms
3. Materials and Methods
3.1. SRIM Software
3.2. Beuhler and Friedman’s First Model (Simple)
3.3. Beuhler and Friedman’s Second Model (B&F)
3.4. TRIM Model
3.5. Schou Model
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Additional Emission Mechanisms
Appendix A.1. Potential Emission
Appendix A.2. Image-Charge Acceleration
Appendix A.3. Thermal Spikes
Appendix A.4. Surface Temperature
Appendix A.5. Projectile Incidence Angle
References
- Axelsson, J.; Reimann, C.; Sundqvist, B. Secondary electron emission from surfaces impacted by multiply-charged polyatomic ions. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1994, 88, 131–137. [Google Scholar] [CrossRef]
- Salata, O.V. Tools of nanotechnology: Electrospray. Curr. Nanosci. 2005, 1, 25–33. [Google Scholar] [CrossRef]
- Mier-Hicks, F.; Lozano, P.C. Electrospray thrusters as precise attitude control actuators for small satellites. J. Guid. Control. Dyn. 2017, 40, 642–649. [Google Scholar] [CrossRef]
- Romero-Sanz, I.; Bocanegra, R.; Fernandez De La Mora, J.; Gamero-Castano, M. Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime. J. Appl. Phys. 2003, 94, 3599–3605. [Google Scholar] [CrossRef] [Green Version]
- Ziemer, J.; Marrese-Reading, C.; Dunn, C.; Romero-Wolf, A.; Cutler, C.; Javidnia, S.; Li, T.; Li, I.; Franklin, G.; Barela, P.; et al. Colloid microthruster flight performance results from space technology 7 disturbance reduction system. In Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, USA, 8–12 October 2017; pp. 1–17. [Google Scholar]
- Thuppul, A.; Wright, P.; Wirz, R.E. Lifetime Considerations and Estimation for Electrospray Thrusters. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018; pp. 4652:1–4652:12. [Google Scholar]
- Thuppul, A.; Wright, P.L.; Collins, A.L.; Ziemer, J.; Wirz, R.E. Lifetime Considerations for Electrospray Thrusters. Aerospace 2020, 7, 108. [Google Scholar] [CrossRef]
- Uchizono, N.M.; Collins, A.L.; Thuppul, A.; Wright, P.L.; Eckhardt, D.Q.; Ziemer, J.; Wirz, R.E. Emission Modes in Electrospray Thrusters Operating with High Conductivity Ionic Liquids. Aerospace 2020, 7, 141. [Google Scholar] [CrossRef]
- Wirz, R.E. Electrospray Thruster Performance and Lifetime Investigation for the LISA Mission. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019; pp. 3816:1–3816:27. [Google Scholar]
- Marrese-Reading, C.; Ziemer, J.; Gamero-Castano, M.; Bame, D.; Demmons, N.; Hruby, V. Plasma Potential Measurements in the Plume of a Colloid Micro-Newton Thruster. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006; pp. 4642:1–4642:7. [Google Scholar]
- Natisin, M.R.; Zamora, H.L. Performance of a Fully Conventionally Machined Liquid-Ion Electrospray Thruster Operated in PIR. In Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, 9–12 September 2019; pp. 522:1–522:16. [Google Scholar]
- Axelsson, J.; Parilis, E.; Reimann, C.; Sullivan, P.; Sundqvist, B. Electron emission from conducting surfaces impacted by multiply-charged polyatomic ions. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1995, 101, 343–356. [Google Scholar] [CrossRef]
- Hofer, W.O. Emission of atoms and electrons from high-density collision cascades in metals. Nucl. Instrum. Methods 1980, 170, 275–279. [Google Scholar] [CrossRef]
- Xu, Y.; Bae, Y.; Beuhler, R.; Friedman, L. Secondary electron analysis of polymeric ions generated by an electrospray ion source. J. Phys. Chem. 1993, 97, 11883–11886. [Google Scholar] [CrossRef]
- Beuhler, R.J. A comparison of secondary electron yields from accelerated water cluster ions (M/z < 50,000) striking Al2O3 and copper surfaces. J. Appl. Phys. 1983, 54, 4118–4126. [Google Scholar]
- Baragiola, R.A. Electron emission from surfaces by impact of polyatomic ions and cosmic dust. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1994, 88, 35–43. [Google Scholar] [CrossRef]
- Taccogna, F.; Longo, S.; Capitelli, M. Plasma-surface interaction model with secondary electron emission effects. Phys. Plasmas 2004, 11, 1220–1228. [Google Scholar] [CrossRef]
- Gunn, J. Evidence for strong secondary electron emission in the tokamak scrape-off layer. Plasma Phys. Control. Fusion 2012, 54, 085007:1–085007:7. [Google Scholar] [CrossRef]
- Patino, M.; Wirz, R. Electron emission from carbon velvet due to incident xenon ions. Appl. Phys. Lett. 2018, 113, 041603:1–041603:3. [Google Scholar] [CrossRef] [Green Version]
- Huerta, C.E.; Wirz, R.E. Ion-induced electron emission reduction via complex surface trapping. AIP Adv. 2019, 9, 125009:1–125009:6. [Google Scholar] [CrossRef]
- Cloupeau, M.; Prunet-Foch, B. Electrostatic spraying of liquids in cone-jet mode. J. Electrost. 1989, 22, 135–159. [Google Scholar] [CrossRef]
- Juraschek, R.; Röllgen, F. Pulsation phenomena during electrospray ionization. Int. J. Mass Spectrom. 1998, 177, 1–15. [Google Scholar] [CrossRef]
- Romero-Sanz, I.; De Carcer, I.A.; de la Mora, J.F. Ionic propulsion based on heated Taylor cones of ionic liquids. J. Propuls. Power 2005, 21, 239–242. [Google Scholar] [CrossRef]
- Walton, S.; Tucek, J.; Champion, R.; Wang, Y. Low energy, ion-induced electron and ion emission from stainless steel: The effect of oxygen coverage and the implications for discharge modeling. J. Appl. Phys. 1999, 85, 1832–1837. [Google Scholar] [CrossRef] [Green Version]
- Westmacott, G.; Ens, W.; Standing, K. Secondary ion and electron yield measurements for surfaces bombarded with large molecular ions. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1996, 108, 282–289. [Google Scholar] [CrossRef]
- Patino, M.I.; Wirz, R.E. Characterization of xenon ion and neutral interactions in a well-characterized experiment. Phys. Plasmas 2018, 25, 062108:1–062108:13. [Google Scholar] [CrossRef]
- Musket, R.; McLean, W.; Colmenares, C.A.; Makowiecki, D.; Siekhaus, W. Preparation of atomically clean surfaces of selected elements: A review. Appl. Surf. Sci. 1982, 10, 143–207. [Google Scholar] [CrossRef]
- Taglauer, E. Surface cleaning using sputtering. Appl. Phys. A 1990, 51, 238–251. [Google Scholar] [CrossRef]
- Hasselkamp, D.; Rothard, H.; Groeneveld, K.O.; Kemmler, J.; Varga, P.; Winter, H. Particle Induced Electron Emission II; Springer: Berlin/Heidelberg, Germany, 1992; Volume 123. [Google Scholar]
- Baragiola, R.; Alonso, E.; Ferron, J.; Oliva-Florio, A. Ion-induced electron emission from clean metals. Surf. Sci. 1979, 90, 240–255. [Google Scholar] [CrossRef]
- Winter, H.; Burgdörfer, J. Slow Heavy-Particle Induced Electron Emission From Solid Surfaces; Springer: Berlin/Heidelberg, Germany, 2007; Volume 225. [Google Scholar]
- Baragiola, R.A. Principles and mechanisms of ion induced electron emission. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1993, 78, 223–238. [Google Scholar] [CrossRef]
- Le Beyec, Y. Cluster impacts at keV and MeV energies: Secondary emission phenomena. Int. J. Mass Spectrom. Ion Process. 1998, 174, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Fallavier, M. Secondary electron emission of solids by impact of molecular ions and clusters. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1996, 112, 72–78. [Google Scholar] [CrossRef]
- Correa, A.A. Calculating electronic stopping power in materials from first principles. Comput. Mater. Sci. 2018, 150, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Bethe, H.A. On the theory of secondary emission. Phys. Rev. 1941, 59, 940–949. [Google Scholar]
- Massey, H.S.W.; Burhop, E.H.S. Electronic and Ionic Impact Phenomena; Clarendon Press: Oxford, UK, 1952. [Google Scholar]
- Beuhler, R.; Friedman, L. A model of secondary electron yields from atomic and polyatomic ion impacts on copper and tungsten surfaces based upon stopping-power calculations. J. Appl. Phys. 1977, 48, 3928–3936. [Google Scholar] [CrossRef]
- Sternglass, E. Theory of secondary electron emission by high-speed ions. Phys. Rev. 1957, 108, 1–12. [Google Scholar] [CrossRef]
- Parilis, E.; Kishinevskii, L. The Theory of Ion-Electron Emission. Sov. Phys. Solid State 1960, 3, 885. [Google Scholar]
- Baragiola, R.; Riccardi, P. Electron emission from surfaces induced by slow ions and atoms. In Reactive Sputter Deposition; Springer: Berlin/Heidelberg, Germany, 2008; pp. 43–60. [Google Scholar]
- Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A. Electron emission from molybdenum under ion bombardment. J. Phys. Appl. Phys. 1981, 14, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- Courtney, D.G.; Dandavino, S.; Shea, H. Comparing direct and indirect thrust measurements from passively fed ionic electrospray thrusters. J. Propuls. Power 2016, 32, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.A.; Levin, D.A. Molecular dynamics electrospray simulations of coarse-grained ethylammonium nitrate (EAN) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4). Aerospace 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. The Penetration of Atomic Particles Through Matter; Mathematisk-fysiske Meddelelser: Munksgaard København; Det Kongelige Danske Videnskabernes Selskab: Copenhagen, Denmark, 1948; Volume XVIII(8), p. 38. [Google Scholar]
- Ziegler, J. Stopping of energetic light ions in elemental matter. J. Appl. Phys. 1999, 85, 1249–1272. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM—The Stopping and Range of Ions in Matter; SRIM Co.: Rimini, Italy, 2008. [Google Scholar]
- Ziegler, J.F.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter; Version 2013.00. 2013. Available online: http://www.srim.org (accessed on 20 August 2020).
- Thum, F.; Hofer, W.O. No enhanced electron emission from high-density atomic collision cascades in metals. Surf. Sci. 1979, 90, 331–338. [Google Scholar] [CrossRef]
- Beuhler, R.; Friedman, L. Threshold studies of secondary electron emission induced by macro-ion impact on solid surfaces. Nucl. Instrum. Methods 1980, 170, 309–315. [Google Scholar] [CrossRef]
- Beuhler, R.; Friedman, L. Low noise, high voltage secondary emission ion detector for polyatomic ions. Int. J. Mass Spectrom. Ion Phys. 1977, 23, 81–97. [Google Scholar] [CrossRef]
- Lindhard, J.; Scharff, M.; Schiøtt, H.E. Range concepts and heavy ion ranges (Notes on Atomic Collisions, II). Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 1963, 33, 1–42. [Google Scholar]
- Bragg, W.H.; Kleeman, R. XXXIX. On the α Particles of Radium, and Their Loss of Range in Passing Through Various Atoms and Molecules. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1905, 10, 318–340. [Google Scholar] [CrossRef] [Green Version]
- Schou, J. Transport theory for kinetic emission of secondary electrons from solids. Phys. Rev. B 1980, 22, 2141–2174. [Google Scholar] [CrossRef]
- Sigmund, P.; Tougaard, S. Electron emission from solids during ion bombardment. Theoretical aspects. In Inelastic Particle-Surface Collisions; Springer: Berlin/Heidelberg, Germany, 1981; pp. 2–37. [Google Scholar]
- Holmén, G.; Svensson, B.; Schou, J.; Sigmund, P. Direct and recoil-induced electron emission from ion-bombarded solids. Phys. Rev. B 1979, 20, 2247–2254. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of stopping powers of 100 eV to 30 keV electrons in 10 elemental solids. Surf. Interface Anal. 2005, 37, 978–988. [Google Scholar] [CrossRef]
- Chantler, C.; Bourke, J. Electron inelastic mean free path theory and density functional theory resolving discrepancies for low-energy electrons in copper. J. Phys. Chem. A 2014, 118, 909–914. [Google Scholar] [CrossRef]
- Holmén, G.; Svensson, B.; Burén, A. Ion induced electron emission from polycrystalline copper. Nucl. Instrum. Methods Phys. Res. 1981, 185, 523–532. [Google Scholar] [CrossRef]
- Hasselkamp, D.; Hippler, S.; Scharmann, A.; Schmehl, T. Electron emission from clean solid surfaces by fast ions. Ann. Phys. 1990, 502, 555–567. [Google Scholar] [CrossRef]
- Svensson, B.; Holmen, G.; Burén, A. Angular dependence of the ion-induced secondary-electron yield from solids. Phys. Rev. B 1981, 24, 3749–3755. [Google Scholar] [CrossRef]
- Nguyen, V.; Wien, K. Secondary electron emission from various metals and CsI bombarded by heavy molecular ions. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1998, 145, 332–345. [Google Scholar] [CrossRef]
- Brunelle, A.; Chaurand, P.; Della-Negra, S.; Le Beyec, Y.; Parilis, E. Secondary electron emission yields from a CsI surface under impacts of large molecules at low velocities (5 × 103–7 × 104 ms−1). Rapid Commun. Mass Spectrom. 1997, 11, 353–362. [Google Scholar] [CrossRef]
- Hasselkamp, D.; Lang, K.; Scharmann, A.; Stiller, N. Ion induced electron emission from metal surfaces. Nucl. Instrum. Methods 1981, 180, 349–356. [Google Scholar] [CrossRef]
- Lakits, G.; Aumayr, F.; Heim, M.; Winter, H. Threshold of ion-induced kinetic electron emission from a clean metal surface. Phys. Rev. A 1990, 42, 5780–5783. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, G.; Meier, F.; Baragiola, R. Formation of autoionizing states of Ne in collisions with surfaces. Phys. Rev. A 1984, 29, 116–122. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Dukes, C.A. Plasmon-assisted electron emission from Al and Mg surfaces by slow ions. Phys. Rev. Lett. 1996, 76, 2547–2550. [Google Scholar] [CrossRef] [Green Version]
- Minniti, M.; Commisso, M.; Sindona, A.; Barone, P.; Bonanno, A.; Oliva, A.; Riccardi, P. The role of Al-Auger electrons in kinetic electron emission from Al surfaces by slow Ne+ and Na+ ions. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2007, 257, 618–622. [Google Scholar] [CrossRef]
- Winter, H.; Lederer, S.; Aumayr, F.; Winter, H. Electron emission for grazing slow atom and ion impact on monocrystalline metal and insulator surfaces. Phys. Scr. 2005, 72, C12–C21. [Google Scholar] [CrossRef]
- Gamero-Castaño, M. The structure of electrospray beams in vacuum. J. Fluid Mech. 2008, 604, 339–368. [Google Scholar] [CrossRef] [Green Version]
- Gamero-Castano, M.; Fernandez De La Mora, J. Direct measurement of ion evaporation kinetics from electrified liquid surfaces. J. Chem. Phys. 2000, 113, 815–832. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Lian, Y.; Sussman, M. Investigation of drop impact on dry and wet surfaces with consideration of surrounding air. Phys. Fluids 2016, 28, 073303:1–073303:24. [Google Scholar] [CrossRef]
- Yarin, A.; Weiss, D. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 1995, 283, 141–173. [Google Scholar] [CrossRef]
- Cossali, G.; Coghe, A.; Marengo, M. The impact of a single drop on a wetted solid surface. Exp. Fluids 1997, 22, 463–472. [Google Scholar] [CrossRef]
- Josserand, C.; Zaleski, S. Droplet splashing on a thin liquid film. Phys. Fluids 2003, 15, 1650–1657. [Google Scholar] [CrossRef]
- Li, G. Plasma Sputtering Behavior of Structured Materials. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2020. [Google Scholar]
- Huerta, C.; Patino, M.; Wirz, R. Secondary electron emission from textured surfaces. J. Phys. D Appl. Phys. 2018, 51, 145202:1–145202:8. [Google Scholar] [CrossRef]
- Swanson, C.; Kaganovich, I.D. Modeling of reduced effective secondary electron emission yield from a velvet surface. J. Appl. Phys. 2016, 120, 213302:1–213302:9. [Google Scholar] [CrossRef] [Green Version]
- Hagstrum, H.D. Theory of Auger ejection of electrons from metals by ions. Phys. Rev. 1954, 96, 336–365. [Google Scholar] [CrossRef]
- Varga, P. Neutralization of multiply charged ions at a surface. Appl. Phys. A 1987, 44, 31–41. [Google Scholar] [CrossRef]
- Kishinevsky, L. Estimation of electron potential emission yield dependence on metal and ion parameters. Radiat. Eff. 1973, 19, 23–27. [Google Scholar] [CrossRef]
- Wilson, R. Vacuum Thermionic Work Functions of Polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and Type 304 Stainless Steel. J. Appl. Phys. 1966, 37, 2261–2267. [Google Scholar] [CrossRef]
- Seki, K. Ionization energies of free molecules and molecular solids. Mol. Cryst. Liq. Cryst. 1989, 171, 255–270. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Lakits, G.; Winter, H. Electron emission from metal surfaces bombarded by slow neutral and ionized particles. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 1990, 48, 597–603. [Google Scholar] [CrossRef]
- Lozano, P.C. Studies on the Ion-Droplet Mixed Regime in Colloid Thrusters. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2003. [Google Scholar]
- Andrianova, N.; Avilkina, V.; Borisov, A.; Mashkova, E.; Parilis, E. The study of graphite disordering using the temperature dependence of ion-induced electron emission. Vacuum 2012, 86, 1630–1633. [Google Scholar] [CrossRef]
- Benka, O.; Steinbatz, M. Temperature dependence of the electron and ion induced electron emission yield of Al, Cu and Ag. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2003, 201, 396–404. [Google Scholar] [CrossRef]
- Dietz, L.; Sheffield, J. Secondary electron emission induced by 5–30-keV monatomic ions striking thin oxide films. J. Appl. Phys. 1975, 46, 4361–4370. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnusson, J.M.; Collins, A.L.; Wirz, R.E. Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters. Aerospace 2020, 7, 153. https://doi.org/10.3390/aerospace7110153
Magnusson JM, Collins AL, Wirz RE. Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters. Aerospace. 2020; 7(11):153. https://doi.org/10.3390/aerospace7110153
Chicago/Turabian StyleMagnusson, Jared M., Adam L. Collins, and Richard E. Wirz. 2020. "Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters" Aerospace 7, no. 11: 153. https://doi.org/10.3390/aerospace7110153
APA StyleMagnusson, J. M., Collins, A. L., & Wirz, R. E. (2020). Polyatomic Ion-Induced Electron Emission (IIEE) in Electrospray Thrusters. Aerospace, 7(11), 153. https://doi.org/10.3390/aerospace7110153