Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats
Abstract
:1. Introduction
1.1. CMG Dynamics
- Six parallel mounted SGCMGs, used in Mir (1986–2001);
- Three orthogonally mounted DGCMGs, used in Skylab (1973–1979);
- Four parallel mounted DGCMGs, used in the International Space Station (1998–);
- A pyramid configuration of four SGCMGs.
1.2. Small Satellite CMG Hardware
2. CMG Objective and Requirements
3. CMG Design
- A flywheel and its motor used to create the angular momentum.
- A second motor—the gimbal motor with a gearhead—rotates the whole flywheel assembly, made up of the first two pieces of hardware and a bracket, creating torque.
- One or several bearings to guide the rotation and to prevent the gimbal motor or gearhead to withstand any bending moment during launch.
- A position sensor that might be necessary to provide accurate initial position of the system once in orbit.
- Finally, a slip ring allowing current and information coming from the rotating flywheel assembly to be routed to controllers.
4. Preliminary CMG Structural Analysis
4.1. CMG Preliminary Analysis
4.2. Complete CMG Analysis
- Threaded holes are converted into non-threaded holes whose diameters are the nominal diameters;
- The hexagonal shape of the sensor is simplified;
- Bearings, grub screws, snap rings and the spacer are removed.
- Welded joints;
- The stepper and the gearhead together and with the stepper housing;
- The slip ring and the slip ring housing;
- The flywheel and the BLDC’s shaft;
- The gimbal shaft and the gearhead’s shaft;
- The sensor with the stepper housing cap and the offset gimbal bracket.
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- SpaceWorks. Nano/Microsatellite Matket Forecast, 9th ed.; SpaceWorks: Atlanta, GA, USA, 2019; Available online: https://www.spaceworks.aero/wp-content/uploads/Nano-Microsatellite-Market-Forecast-9th-Edition-2019.pdf (accessed on 12 May 2019).
- European Space Agency. ESA’s ‘CubeSat Central’ for Smaller Missions into Space; European Space Agency: Paris, France, 2019; Available online: https://www.esa.int/Our_Activities/Space_Engineering_Technology/ESA_s_CubeSat_central_for_smaller_missions_into_space (accessed on 12 May 2019).
- Steyn, W.H.; Lappas, V. Chapter I-2c: Attitude Control and Determination, Nanosatellites: Space and Ground Technologies, Operations and Economics; de Carvalho, R.A., Estela, J., Langer, M., Eds.; Wiley: Hoboken, NJ, USA, March 2002. [Google Scholar] [CrossRef]
- Lappas, V. ‘QB50 ADCS and GPS Subsystem’, 3rd QB50 Workshop, Belgium. 2012. Available online: https://www.qb50.eu/download/3rdQB50Workshop_presentations/07-ADCS%202.2.12-Lappas-3rdQB50Workshop.pdf (accessed on 15 April 2020).
- Bridges, C.P.; Kenyon, S.; Shaw, P.; Simons, E.; Visagie, L.; Theodorou, T.; Yeomans, B.; Parsons, J.; Lappas, V.; Underwood, C. A Baptism of Fire: The STRaND-1 Nanosatellite. In Proceedings of the 27th AIAA/USU Conference, Small Satellite Constellations, Logan, UT, USA, 10–15 August 2013; paper: SSC13-X-3. Available online: https://pdfs.semanticscholar.org/e58b/80cf5653a03ead2929b358be91a9000bfe3b.pdf (accessed on 15 April 2020).
- Lappas, V.J. CMG Based AOCS for Agile Small Satellite; University of Surrey: Guildford, UK, 2002; Available online: https://core.ac.uk/display/101476 (accessed on 15 May 2019).
- Wie, B. Space Vehicle Dynamics and Control, 2nd ed; American Institute of Aeronautics and Astronautics: Phoenix, AZ, USA, 2012. [Google Scholar] [CrossRef]
- Heiberg, C.J.; Bailey, D.; Wie, B. Precision Spacecraft Pointing Using Single-Gimbal Control Moment Gyroscopes with Disturbance. J. Guid. Control Dyn. 2008, 23, 77–85. [Google Scholar] [CrossRef]
- Defendini, A.; Morand, J.; Faucheux, P.; Guay, P.; Rabejac, C.; Bangert, K.; Heimerl, H. Control Moment Gyroscope (CMG) Solutions for Small Satellites. In Proceedings of the 28th Annual AAS Rocky Mountain Guidance and Control Conference, Breckenridge, CO, USA, 5–9 February 2005. AAS 05-004. [Google Scholar]
- Leve, F.A.; Hamilton, B.J.; Peck, M.A. Introduction. In Spacecraft Momentum Control Systems; Space Technology Library, Springer: Cham, Switzerland, 2015; Volume 1010. [Google Scholar]
- Lappas, V.; Oosthuizen, P.; Madle, P.; Cowie, L.; Yuksel, G.; Fertin, D. Micro CMGs for Agile Small Satellites Design and In-orbit Tests. In Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, Loutraki, Greece, 17–20 October 2005. (ESA SP-606, January 2006). [Google Scholar]
- Lappas, V.; Steyn, W.H.; Underwood, C. Design and testing of a control moment gyroscope cluster for small satellites. J. Spacecr. Rocket. 2005, 42, 729–739. [Google Scholar] [CrossRef]
- Votel, R.; Sinclair, D. Comparison of Control Moment Gyros and Reaction Wheels for Small Earth-Observing. In Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2012; pp. 1–7. [Google Scholar]
- Chang, H.; Jiao, W.; Fu, Q.; Xie, J.; Yuan, W. Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft. Sensors 2010, 10, 4130–4144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patankar, K.; Fitz-Coy, N.; Roithmayr, C.M. Design Considerations for Miniaturized Control Moment Gyroscopes for Rapid Retargeting and Precision Pointing of Small Sat. In Proceedings of the Utah Small Satellite Conference, Logan, UT, USA, 7 July 2014. SSC14-III-8. [Google Scholar]
- Nagabhushan, V. Development of Control Moment Gyroscopes for Attitude Control of Small Satellites. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- Honeybee Robotics. Microsat CMG Attitude Control Array. 2019. Available online: https://www.honeybeerobotics.com/wp-content/uploads/2014/03/Honeybee-Robotics-Microsat-CMGs.pdf (accessed on 8 May 2019).
- Akiyama, K.; Fujihashi, K.; Matunaga, S. High-Speed Attitude Control System for Small Satellite with Micro-CMGs. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2012, 8, Pd_91–Pd_97. [Google Scholar] [CrossRef] [Green Version]
- Baker, N. Feasibility and Design of Miniaturized Control Moment Gyroscope for a 3-Axis Stabilized Micro Satellite. Master’s Thesis, Lulea University of Technology, Luleå, Sweden, 2016. Available online: https://www.diva-portal.org/smash/get/diva2:1053012/FULLTEXT01.pdf (accessed on 12 May 2019).
- Wertz, J.R.; Everett, D.F.; Puschell, J. Space Mission Engineering: The New SMAD, 5th ed.; Microcosm Press: Portland, OR, USA, 2011. [Google Scholar]
- Hevner, R.; Holemans, W.; Puig-Suari, J.; Twiggs, R. An Advanced Standard for CubeSats Conference on Small Satellites. In Proceedings of the 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–11 August 2011; pp. 1–12. Available online: http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1111&context=smallsat (accessed on 21 May 2019).
- Arianespace. Vega C User’s Manual; Arianespace: Courcurona, France, 2018; Available online: http://www.arianespace.com/wp-content/uploads/2018/07/Vega-C-user-manual-Issue-0-Revision-0_20180705.pdf (accessed on 7 August 2019).
- Shoberg, R.S. Engineering Fundamentals of Threaded Fastener Design and Analysis; RS Technologies: Farmington Hills, MI, USA, 2000; Available online: http://www.hexagon.de/rs/engineering.fundamentals.pdf (accessed on 9 August 2019).
Parameter | SwampSat 1 [16] | Honeybee 2 [17] | Tsubame 2 [18] | Lappas [6,12] | Baker [19] | BILSAT-1 3 [11] | Cranfield CMG |
---|---|---|---|---|---|---|---|
Size [mm] | 100 × 100 × 50 | 48 × 48 × 91 | Ø50 × 134 | 150 × 150 × 50 | 96 × 96 × 96 | 135 × 155 × 190 | 100 × 100 × 50 |
Mass [kg] | 0.437 | 0.6 | 0.960 | 1.170 | 842 | 2.2 | 0.250 |
Peak power [W] | 3.2 | 2 | 4 | 2 | N/A | 12 | 2.5 |
Maximum torque [mN·m] | 0.8 | 172 | 31 | 52.25 | 1.4 | 55.9 | 1 |
Angular momentum [mN·m·s] | 0.8 | 86 | 52.7 | 1000 | 4.5 | 280 | 0.629 |
Gimbal rate [rad/s] | 1 | Ν/A | 1 | 0.2 | 10 | 0.1 | 1 |
Parameter | Value | Condition |
---|---|---|
Mass | 500 g | Maximum |
Volume | ½ CubeSat-Unit (100 × 100 × 50 mm) | Maximum |
Power | 3 W | Maximum |
Torque (cluster) | 0.145 mN⋅m | Minimum |
Angular momentum (CMG) | 0.629 mN·m·s | Minimum |
Gimbal angle error | 0.1° | Maximum |
XCMG | ||||||
---|---|---|---|---|---|---|
Frequency [Hz] | 1 | 4.99 | 5 | 29.99 | 30 | 110 |
Acceleration [m/s²] | 3.924 | 3.924 | 7.848 | 7.848 | 4.905 | 4.905 |
YCMG | ||||||
Frequency [Hz] | 1 | 4.99 | 5 | 34.99 | 35 | 110 |
Acceleration [m/s²] | 2.227 | 2.227 | 4.531 | 4.531 | 5.664 | 5.664 |
ZCMG | ||||||
Frequency [Hz] | 1 | 4.99 | 5 | 34.99 | 35 | 110 |
Acceleration [m/s²] | 3.203 | 3.203 | 6.407 | 6.407 | 8.009 | 8.009 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaude, A.; Lappas, V. Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats. Aerospace 2020, 7, 55. https://doi.org/10.3390/aerospace7050055
Gaude A, Lappas V. Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats. Aerospace. 2020; 7(5):55. https://doi.org/10.3390/aerospace7050055
Chicago/Turabian StyleGaude, Alexis, and Vaios Lappas. 2020. "Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats" Aerospace 7, no. 5: 55. https://doi.org/10.3390/aerospace7050055
APA StyleGaude, A., & Lappas, V. (2020). Design and Structural Analysis of a Control Moment Gyroscope (CMG) Actuator for CubeSats. Aerospace, 7(5), 55. https://doi.org/10.3390/aerospace7050055