Climate Impact Mitigation Potential of Formation Flight
Abstract
:1. Introduction
2. Approach and Methods
2.1. General Approach
2.2. Global Study
2.3. Regional Study
2.4. Methodology
2.4.1. Identification of Formation Candidates
2.4.2. Geometric Modeling of Formation Routes
2.4.3. Benefit Assessment by Surrogate Models
2.4.4. Trajectory Calculation and Aerodynamic Modelling
2.4.5. Wind Optimal Modeling of Formation Routes
2.4.6. Derivation of Emission Inventories
2.4.7. Climate Impact Assessment
2.5. Reference Settings
3. Results
3.1. Overall Formation Statistics
3.1.1. Global Study
3.1.2. Regional Study
3.2. Comparison of Reference Settings
3.3. Route Geometry and Benefit Analysis
3.4. Formation Ranking
3.5. Geographic Formation Distribution
3.6. Emission Distribution
3.7. Climate Impact
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMS | Amsterdam Airport Schiphol, Netherlands |
ATL | Hartsfield–Jackson Atlanta International Airport, USA |
ATR | average temperature response |
AVL | Athena Vortex Lattice |
AWSE | aircraft wake-surfing for efficiency |
BADA | Base of Aircraft Data |
BDD | base drag database |
CDG | Charles de Gaulle Airport, Paris, France |
COC | cash operating cost |
DOC | direct operating cost |
DFW | Dallas Fort Worth International Airport, USA |
DODP | double origin-destination pair |
DOH | Hamad International Airport, Doha, Katar |
DRD | drag reduction database |
ECMWF | European Centre for Medium-Range Weather Forecasts |
EFF | extended formation flight |
FCA | formation cruise altitude |
FCM | formation cruise Mach number |
FRG | formation route geometry |
IAH | George Bush Intercontinental Airport, Houston, USA |
JFK | John F. Kennedy International Airport, New York, USA |
LHR | Heathrow Airport, London, England |
LHS | Latin Hypercube Sampling |
LRC | long-range cruise speed |
LTO | landing and take-off cycle |
MRU | Sir Seewoosagur Ramgoolam International Airport, Mauritius |
NAFC | North Atlantic flight corridor |
NAT | North Atlantic |
ORD | Chicago O’Hare International Airport, USA |
RUN | Roland Garros Airport, La Réunion, France |
SEP | separation end point |
RSP | rendezvous start point |
TCM | Trajectory Calculation Module |
TOC | top of climb |
TOD | top of descent |
References
- Wieselsberger, C. Beitrag zur Erklärung des Winkelfluges einiger Zugvögel. Z. Flugtech. Mot. 1914, 15, 225–229. [Google Scholar]
- Lissaman, P.B.S.; Shollenberger, C.A. Formation Flight of Birds. Science 1970, 168, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Koloschin, A.; Fezans, N. Flight Physics of Fuel-Saving Formation Flight. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Erbschloe, D.; Carter, D.L.; Dale, G.A.; Doll, C.; Niestroy, M.A.; Marks, T. Operationalizing Flight Formations for Aerodynamic Benefits. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Beukenberg, M.; Hummel, D. Aerodynamics, Performance and Control of Airplanes in Formation Flight. In Proceedings of the 17st Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 9–14 September 1990; pp. 1777–1794. [Google Scholar]
- Vachon, M.J.; Ray, R.; Walsh, K.; Ennix, K. F/A-18 Aircraft Performance Benefits Measured During the Autonomous Formation Flight Project. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, USA, 5–8 August 2002. [Google Scholar]
- Pahle, J.; Berger, D.; Venti, M.; Faber, J.; Duggan, C.; Cardinal, K. A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft. In Proceedings of the Atmospheric Flight Mechanics Conference, Portland, OR, USA, 8–11 August 2011. [Google Scholar]
- Brown, N.; Hanson, C. Wake-Surfing: Automated Cooperative Trajectories; NASA Armstrong Flight Research Center: Edwards, CA, USA, 2017. [Google Scholar]
- Ribichini, G.; Frazzoli, E. Efficient coordination of multiple-aircraft systems. In Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Maui, HI, USA, 9–12 December 2003; Volume 1, pp. 1035–1040. [Google Scholar]
- Rao, V.; Kabamba, P. Time-optimal graph traversal for two agents: When is formation travel beneficial? In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; Volume 4, pp. 3254–3259. [Google Scholar]
- Kent, T.; Richards, A. A Geometric Approach to Optimal Routing for Commercial Formation Flight. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar]
- Hange, C. Evaluation of Formation Flight as a Fuel Reduction Strategy Given Real World Flight Dispatching Constraints. In Proceedings of the 2013 Aviation Technology, Integration, and Operations Conference, Los Angeles, CA, USA, 12–14 August 2013. [Google Scholar]
- Xue, M.; Hornby, G. An Analysis of the Potential Savings from Using Formation Flight in the NAS. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA, 13–16 August 2012. [Google Scholar]
- Visser, H.G.; Santos, B.F.; Verhagen, C.M.A. A Decentralized Approach to Formation Flight Routing. In Proceedings of the ATRS World Conference, Rhodes, Greece, 23–26 June 2016. [Google Scholar]
- Boling, B.; Liu, Y.; Stumpf, E. Understanding Fleet Impacts of Formation Flight. In Proceedings of the 5th CEAS Air & Space Conference, Delft, The Netherlands, 7–11 September 2015. [Google Scholar]
- Flanzer, T.C.; Bieniawski, S.R.; Brown, J.A. Advances in Cooperative Trajectories for Commercial Applications. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Swaid, M.; Marks, T.; Lührs, B.; Gollnick, V. Quantification of Formation Flight Benefits under Consideration of Uncertainties on Fuel Planning. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil, 9–14 September 2018. [Google Scholar]
- Dahlmann, K.; Matthes, S.; Yamashita, H.; Unterstrasser, S.; Grewe, V.; Marks, T. Assessing the Climate Impact of Formation Flights. Aerospace 2020, 7, 172. [Google Scholar] [CrossRef]
- Unterstrasser, S.; Stephan, A. Far field wake vortex evolution of two aircraft formation flight and implications on young contrails. Aeronaut. J. 2020, 124, 667–702. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Stenke, A. AirClim: An efficient tool for climate evaluation of aircraft technology. Atmos. Chem. Phys. Discuss. 2008, 8, 4621–4639. [Google Scholar] [CrossRef] [Green Version]
- Marks, T.; Swaid, M.; Lührs, B.; Gollnick, V. Identification of optimal rendezvous and separation areas for formation flight under consideration of wind. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brasil, 9–14 September 2018. [Google Scholar]
- Marks, T.; Swaid, M. Optimal Timing and Arrangement for Two-Aircraft Formations on North Atlantic under Consideration of Wind. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Drews, K.; Marks, T.; Konieczny, G.; Linke, F.; Gollnick, V. Identification and Modeling of Civil Formation Flight Routes Based on Global Flight Schedule Data. In Proceedings of the 66. Deutscher Luft- und Raumfahrtkongress (DLRK), Munich, Germany, 5–7 September 2017. [Google Scholar]
- Marks, T. Modellansätze zur Bewertung von Formationsflügen im Lufttransportsystem. Ph.D. Thesis, Hamburg Technical University, Hamburg, Germany, 2019. [Google Scholar]
- Linke, F. Trajectory Calculation Module (TCM)—Tool Description and Validation; Internal Report; German Aerospace Center: Hamburg, Germany, 2014. [Google Scholar]
- Lührs, B.; Linke, F.; Gollnick, V. Erweiterung eines Trajektorienrechners zur Nutzung meteorologischer Daten für die Optimierung von Flugzeugtrajektorien. In Proceedings of the 63. Deutscher Luft- und Raumfahrtkongress (DLRK), Augsburg, Germany, 16–18 September 2014. [Google Scholar]
- Zumegen, C.; Stumpf, E. Flight behaviour of long-haul commercial aircraft in formation flight. In Proceedings of the Air Transport Research Society, ATRS World Conference, Amsterdam, The Netherlands, 2–5 July 2019. [Google Scholar]
- Marks, T.; Zumegen, C.; Gollnick, V.; Stumpf, E. Assessing formation flight benefits on trajectory level including turbulence and gust. In Proceedings of the Italian Association of Aeronautics and Astronautics XXV International Congress, Rome, Italy, 9–12 September 2019. [Google Scholar]
- Dubois, D.; Paynter, G.C. “Fuel Flow Method2” for Estimating Aircraft Emissions; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Dahlmann, K.; Grewe, V.; Frömming, C.; Burkhardt, U. Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes? Transp. Res. Part D Transp. Environ. 2016, 46, 40–55. [Google Scholar] [CrossRef] [Green Version]
- Unterstrasser, S. The Contrail Mitigation Potential of Aircraft Formation Flight Derived from High-Resolution Simulations. Aerospace 2020, 7, 170. [Google Scholar] [CrossRef]
- Irvine, E.; Hoskins, B.J.; Shine, K.P.; Lunnon, R.W.; Froemming, C. Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. 2012, 20, 80–93. [Google Scholar] [CrossRef] [Green Version]
T30 | T50 | ALL | NAT | |
---|---|---|---|---|
single flights after filtering | 10,457 | 16,503 | 32,939 | n/a |
beneficial formations | 2701 | 5599 | 16,046 | n/a |
selected formations | 1122 | 1878 | 4569 | n/a |
unique formations | 155 | 292 | 795 | 648 |
feasible/selected formations | 100 | 203 | 555 | 334 |
single flights | 1434 | 2558 | 6564 | 668 |
percentage | 13.7 | 15.5 | 19.9 | n/a |
T30 | T50 | ALL | NAT | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | sd | Mean | sd | Mean | sd | Mean | sd | ||
[%] | 5.9 | 1.96 | 5.35 | 2.22 | 5.66 | 2.28 | 7.57 | 1.34 | |
[kg] | 7162 | 3066 | 6555 | 3137 | 6923 | 3401 | 7536 | 1494 | |
[%] | 3.25 | 3.25 | 3.75 | 3.66 | 3.57 | 3.66 | 0.81 | 1.48 | |
[%] | 2.30 | 2.52 | 2.93 | 2.66 | 2.52 | 2.62 | 1.1 | 2.13 | |
[%] | 88.50 | 3.77 | 88.09 | 3.58 | 88.27 | 3.83 | 81.54 | 7.51 | |
[%] | 79.13 | 11.59 | 78.41 | 11.81 | 77.29 | 12.71 | 78.08 | 8.02 |
DODP | Rank by | [%] | Rank by | [kg] | [%] | [%] | [%] | [%] |
---|---|---|---|---|---|---|---|---|
RUN-CDG/MRU-CDG | 1 | 11.184 | 3 | 17,954 | 0.323 | 0.213 | 94.22 | 93.55 |
IAH-DOH/DFW-DOH | 2 | 10.964 | 1 | 23,530 | 0.279 | 0.585 | 94.80 | 95.91 |
LHR-GRU/CDG-GRU | 3 | 10.500 | 6 | 17,254 | 0.986 | 0.155 | 92.49 | 93.81 |
DFW-DOH/IAH-DOH | 4 | 10.292 | 2 | 22,088 | 2.183 | 0.009 | 95.28 | 95.94 |
FRA-SGN/CDG-BKK | 5 | 9.961 | 9 | 16,605 | 0.816 | 0.106 | 86.76 | 89.32 |
MRU-CDG/RUN-CDG | 6 | 9.882 | 5 | 17,725 | 0.243 | 0.274 | 93.65 | 94.39 |
ATL-DXB/IAD-AUH | 13 | 9.327 | 4 | 17,846 | 0.055 | 2.573 | 90.87 | 95.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marks, T.; Dahlmann, K.; Grewe, V.; Gollnick, V.; Linke, F.; Matthes, S.; Stumpf, E.; Swaid, M.; Unterstrasser, S.; Yamashita, H.; et al. Climate Impact Mitigation Potential of Formation Flight. Aerospace 2021, 8, 14. https://doi.org/10.3390/aerospace8010014
Marks T, Dahlmann K, Grewe V, Gollnick V, Linke F, Matthes S, Stumpf E, Swaid M, Unterstrasser S, Yamashita H, et al. Climate Impact Mitigation Potential of Formation Flight. Aerospace. 2021; 8(1):14. https://doi.org/10.3390/aerospace8010014
Chicago/Turabian StyleMarks, Tobias, Katrin Dahlmann, Volker Grewe, Volker Gollnick, Florian Linke, Sigrun Matthes, Eike Stumpf, Majed Swaid, Simon Unterstrasser, Hiroshi Yamashita, and et al. 2021. "Climate Impact Mitigation Potential of Formation Flight" Aerospace 8, no. 1: 14. https://doi.org/10.3390/aerospace8010014
APA StyleMarks, T., Dahlmann, K., Grewe, V., Gollnick, V., Linke, F., Matthes, S., Stumpf, E., Swaid, M., Unterstrasser, S., Yamashita, H., & Zumegen, C. (2021). Climate Impact Mitigation Potential of Formation Flight. Aerospace, 8(1), 14. https://doi.org/10.3390/aerospace8010014