Thermal Effect on the Instability of Annular Liquid Jet
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
3.1. Results of the Basic Case
3.2. Effect of the Weber Number
3.3. Marangoni Effects on Annular Liquid Jet Instability
- Case i:
- and ;
- Case ii:
- and ;
- Case iii:
- , and ;
- Case iv:
- , and .
- Case v:
- and ;
- Case vi:
- and ;
- Case vii:
- , and ;
- Case viii:
- , and ;
3.4. Effect of Prandtl Number
3.5. Effect of Heat Transfer Direction
3.6. Effect of the Reynolds Number
3.7. Effect of Temperature Gradient
3.8. Effect of Gas-to-Liquid Density Ratio and Velocity Ratio
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sirignano, W.; Mehring, C. Review of Theory of Distortion and Disintegration of Liquid Streams. Prog. Energ. Combust. 1999, 31, 609–655. [Google Scholar]
- Rayleigh, L. On the instability of jets. Proc. Lond. Math. Soc. 1878, 10, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Crapper, G.D.; Dombrowski, N.; Pyott, G.A.D. Kelvin–Helmholtz wave growth on cylindrical sheets. J. Fluid Mech. 1975, 68, 497–502. [Google Scholar] [CrossRef]
- Shen, J.; Li, X. Instability of an annular viscous liquid jet. Acta Mech. 1996, 114, 167–183. [Google Scholar] [CrossRef]
- Meyer, J.; Weihs, D. Capillary instability of an annular liquid jet. J. Fluid Mech. 1987, 179, 531–545. [Google Scholar] [CrossRef]
- Chen, J.N.; Lin, S.P. Instability of an annular jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 2002, 450, 235–258. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, Z.-G.; Li, Q.; Cheng, P. Review on pressure swirl injector in liquid rocket engine. Acta Astronaut. 2018, 145, 174–198. [Google Scholar] [CrossRef]
- Anderson, W.E.; Yang, V. Liquid Rocket Engine Combustion Instability; American Institute of Aeronautics and Astronautics: Fort Collins, CO, USA, 1995. [Google Scholar]
- Vadivukkarasan, M.; Panchagnula, M.V. Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J. Fluid Mech. 2017, 812, 152–177. [Google Scholar] [CrossRef]
- Duke, D.; Honnery, D.; Soria, J. The growth of instabilities in annular liquid sheets. Exp. Therm. Fluid Sci. 2015, 68, 89–99. [Google Scholar] [CrossRef]
- Yang, L.; Du, M.; Fu, Q. Stability of an annular power-law liquid sheet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2014, 229, 2750–2759. [Google Scholar] [CrossRef]
- Fu, Q.-F.; Yang, L.-J.; Tong, M.-X.; Wang, C. Absolute and convective instability of a confined swirling annular liquid layer. At. Sprays 2014, 24, 555–573. [Google Scholar] [CrossRef]
- Panchagnula, M.V.; Sojka, P.E.; Santangelo, P.J. On the three-dimensional instability of a swirling, annular, inviscid liquid sheet subject to unequal gas velocities. Phys. Fluids 1996, 8, 3300–3312. [Google Scholar] [CrossRef] [Green Version]
- Reitz, R.D.; Lian, Z.W. The effect of vaporization and gas compressibility on liquid jet atomization. At. Sprays 1993, 3, 249–264. [Google Scholar] [CrossRef]
- Cao, J.; Li, X. Stability of plane liquid sheets in compressible gas streams. J. Propuls. Power 2000, 16, 623–627. [Google Scholar] [CrossRef]
- Yan, C.; Xie, M. Stability of an annular viscous liquid jet in compressible gases with different properties inside and outside of the jet. Front. Energy Power Eng. China 2009, 4, 198–204. [Google Scholar] [CrossRef]
- Li, G.-B.; Wang, Y.-R.; Xiao, L.-M. Instability of an annular liquid sheet exposed to compressible gas flows. Int. J. Multiph. Flow 2019, 119, 72–83. [Google Scholar] [CrossRef]
- Scriven, L.E.; Sternling, V.S. The Marangoni effects. Nature 1960, 187, 186–788. [Google Scholar] [CrossRef]
- Funada, T. Marangoni instability of thin liquid sheet. J. Phys. Soc. Jpn. 1986, 55, 2191–2202. [Google Scholar] [CrossRef]
- Oron, A.; Deissler, R.; Duh, J. Marangoni instability in a liquid sheet. Adv. Space Res. 1995, 16, 83–86. [Google Scholar] [CrossRef]
- Dávalos-Orozco, L.A. Thermocapillar instability of liquid sheets in motion. Colloids Surf. A 1999, 157, 223–233. [Google Scholar] [CrossRef]
- Tong, M.-X.; Yang, L.-J.; Fu, Q.-F. Thermocapillar instability of a two-dimensional viscoelastic planar liquid sheet in surrounding gas. Phys. Fluids 2014, 26, 33105. [Google Scholar] [CrossRef]
- Fu, Q.-F.; Yang, L.-J.; Tong, M.-X.; Wang, C. Absolute and convective instability of a liquid sheet with transverse temperature gradient. Int. J. Heat Fluid Flow 2013, 44, 652–661. [Google Scholar] [CrossRef]
- Zhang, S.; Lan, X.-D.; Zhou, M. Thermocapillary instability of a liquid sheet with centrifugal force. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 47. [Google Scholar] [CrossRef]
- Ashgriz, N.; Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 1995, 291, 163–190. [Google Scholar] [CrossRef]
- Xu, J.-J.; Davis, S.H. Instability of capillary jets with thermocapillarity. J. Fluid Mech. 1985, 161, 1–25. [Google Scholar] [CrossRef]
- Dijkstra, H.A.; Steen, P.H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 1991, 229, 205–228. [Google Scholar] [CrossRef]
- Li, S.; Yang, R.; Mu, K.; Luo, X.; Si, T. Thermal effects on the instability of coaxial liquid jets in the core of a gas stream. Phys. Fluids 2019, 31, 032106. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; New Age International: New Delhi, India, 2006. [Google Scholar]
- Joseph, D.; Funada, T.; Wang, J. Potential Flows of Viscous and Viscoelastic Fluids; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Funada, T.; Joseph, D.D. Viscous potential flow analysis of Kelvin-Helmholtz instability in a channel. J. Fluid Mech. 2001, 445, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.; Radhakrishna, M.C.; Rudraiah, N. Kelvin-Helmholtz instability in viscoelastic fluids in presence of electro-magnetic fields. Phys. Fluids 2011, 23, 094107. [Google Scholar] [CrossRef]
- Tammisola, O.; Sasaki, A.; Lundell, F.; Matsubara, M.; Söderberg, L.D. Stabilizing effect of surrounding gas flow on a plane liquid sheet. J. Fluid Mech. 2011, 672, 5–32. [Google Scholar] [CrossRef]
- Xie, L.; Yang, L.-J. Axisymmetric and nonaxisymmetric instability of a charged viscoelastic jet under an axial magnetic field. J. Non-Newtonian Fluid Mech. 2017, 248, 92–98. [Google Scholar] [CrossRef]
- Duan, R.-Z.; Chen, Z.-Y.; Wang, C.; Yang, L.-J. Instability of a confined viscoelastic liquid sheet in a viscous gas medium. J. Fluids Eng. 2013, 135, 121204. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Yang, L.-J.; Fu, Q.-F. Spatial instability of viscous double-layer liquid sheets. Phys. Fluids 2016, 28, 102101. [Google Scholar] [CrossRef]
- Xie, L.; Jia, B.-Q.; Cui, X.; Yang, L.-J.; Fu, Q.-F. Linear analysis and energy budget of viscous liquid jets in both axial and radial electric fields. Appl. Math. Model. 2020, 83, 400–418. [Google Scholar] [CrossRef]
- Lin, S.P. Breakup of Liquid Sheets and Jets; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Jia, B. Thermal Effect on the Instability of Annular Liquid Jet. Aerospace 2021, 8, 382. https://doi.org/10.3390/aerospace8120382
Cui X, Jia B. Thermal Effect on the Instability of Annular Liquid Jet. Aerospace. 2021; 8(12):382. https://doi.org/10.3390/aerospace8120382
Chicago/Turabian StyleCui, Xiao, and Boqi Jia. 2021. "Thermal Effect on the Instability of Annular Liquid Jet" Aerospace 8, no. 12: 382. https://doi.org/10.3390/aerospace8120382
APA StyleCui, X., & Jia, B. (2021). Thermal Effect on the Instability of Annular Liquid Jet. Aerospace, 8(12), 382. https://doi.org/10.3390/aerospace8120382