Assessing an Image-to-Image Approach to Global Path Planning for a Planetary Exploration
Abstract
:1. Introduction
1.1. Mission Reference Architecture
1.2. Path Generation
1.3. Machine-Learning-Based Approaches to Path Planning
2. Materials and Methods
2.1. Dealing with Images
2.2. Conditioning Input
2.3. Pix2pix
3. Generative Path-Planning Approach
3.1. Input and Outputs
3.2. Success Metrics
3.3. Dataset Generation
3.4. Architecture
4. Results
4.1. Epoch Variation
4.2. Dataset Size
4.3. Bottleneck Size
4.4. Initial and End Goal Size
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GAN | Generative Adversarial Network |
CGAN | Conditional Generative Adversarial Network |
FID | Fréchet Inception Distance |
OFID | Overall Fréchet Inception Distance |
References
- Board, Space Studies, and National Research Council. Vision and Voyages for Planetary Science in the Decade 2013–2022; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Carpenter, K.; Cable, M.L.; Choukroun, M.; Iacoponi, S.; Moreland, S.; Heverly, M.; Nayar, H.; Kennedy, B.; Bowkett, J.; Reid, W. The Science Case for Surface Mobility on Icy Worlds. Bull. Am. Astron. Soc. 2021, 53, 186. [Google Scholar]
- Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef] [PubMed]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef] [Green Version]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview. In Motion and Operation Planning of Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–27. [Google Scholar]
- Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 2016, 7426913. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Shan, T.; Chen, F.; Liu, L.; Englot, B. Information-Driven Path Planning. In Current Robotics Reports; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–12. [Google Scholar]
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput. Commun. 2020, 149, 270–299. [Google Scholar] [CrossRef]
- Panda, M.; Das, B.; Subudhi, B.; Pati, B.B. A comprehensive review of path planning algorithms for autonomous underwater vehicles. Robot. Auton. Syst. 2020, 17, 321–352. [Google Scholar] [CrossRef] [Green Version]
- Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles; Springer: Berlin/Heidelberg, Germany, 1997; pp. 203–220. [Google Scholar]
- Gao, P.; Liu, Z.; Wu, Z.; Wang, D. A global path planning algorithm for robots using reinforcement learning. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 1693–1698. [Google Scholar]
- Ellery, A. Planetary Rovers: Robotic Exploration of the Solar System, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Carsten, J.; Rankin, A.; Ferguson, D.; Stentz, A. Global Path Planning on Board the Mars Exploration Rovers. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–11. [Google Scholar]
- Otsu, K.; Matheron, G.; Ghosh, S.; Toupet, O.; Ono, M. Fast approximate clearance evaluation for rovers with articulated suspension systems. J. Field Robot. 2019, 37, 768–785. [Google Scholar] [CrossRef] [Green Version]
- Patle, B.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Wong, C.; Yang, E.; Yan, X.; Gu, D. Adaptive and intelligent navigation of autonomous planetary rovers—A survey. In Proceedings of the 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Pasadena, CA, USA, 24–27 July 2017; pp. 237–244. [Google Scholar]
- Marcucci, T.; Petersen, M.; von Wrangel, D.; Tedrake, R. Motion Planning around Obstacles with Convex Optimization. arXiv 2022, arXiv:2205.04422. [Google Scholar]
- Tompkins, P.; Stentz, A.; Wettergreen, D. Global path planning for mars rover exploration. In Proceedings of the 2004 IEEE Aerospace Conference (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 6–13 March 2004; pp. 801–815. [Google Scholar]
- Rekleitis, I.; Bedwani, J.-L.; Dupuis, E.; Allard, P. Path planning for planetary exploration. In Proceedings of the 2008 Canadian Conference on Computer and Robot Vision, Windsor, ON, Canada, 28–30 May 2008; pp. 61–68. [Google Scholar]
- Garcia, A.; Barrientos Cruz, A.; Medina, A.; Colmenarejo, P.; Mollinedo, L.; Rossi, C. 3D Path planning using a fuzzy logic navigational map for Planetary Surface Rovers. In 11th Symposium on Advanced Space Technologies in Robotics and Automation, Proceedings of the ASTRA 2011, 12–14 April 2011, Noordwijk, the Netherlands; European Space Agency-Automation and Robotics (A&R) Section: Noordwijk, The Netherlands, 2011. [Google Scholar]
- Roncagliolo, P. Evaluation and Implementation of Modern Path Planning Algorithms for Planetary Exploration Rovers. Master’s Thesis, Univeristy of Genoa, Genoa, Italy, 2020. [Google Scholar] [CrossRef]
- Pérez-del-Pulgar, C.J.; Sánchez, J.R.; Sánchez, A.J.; Azkarate, M.; Visentin, G. Path planning for reconfigurable rovers in planetary exploration. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1453–1458. [Google Scholar]
- Yu, X.; Wang, P.; Zhang, Z. Learning-based end-to-end path planning for Lunar Rovers with safety Constraints. Sensors 2021, 21, 796. [Google Scholar] [CrossRef]
- Sutoh, M.; Otsuki, M.; Wakabayashi, S.; Hoshino, T.; Hashimoto, T. The right path: Comprehensive path planning for lunar exploration rovers. IEEE Robot. Autom. Mag. 2015, 22, 22–33. [Google Scholar] [CrossRef]
- Blackmore, L.; Kuwata, Y.; Wolf, M.T.; Assad, C.; Fathpour, N.; Newman, C.; Elfes, A. Global reachability and path planning for planetary exploration with montgolfiere balloons. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3581–3588. [Google Scholar]
- Jiang, J.; Zeng, X.; Guzzetti, D.; You, Y. Path planning for asteroid hopping rovers with pre-trained deep reinforcement learning architectures. Acta Astronaut. 2020, 2020 1, 265–279. [Google Scholar] [CrossRef]
- Tzanetos, T.; Aung, M.; Balaram, J.; Grip, H.F.; Karras, J.T.; Canham, T.K.; Kubiak, G.; Anderson, J.; Merewether, G.; Starch, M.; et al. Ingenuity Mars Helicopter: From Technology Demonstration to Extraterrestrial Scout. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–19. [Google Scholar]
- Zavoli, A.; Federici, L. Reinforcement learning for robust trajectory design of interplanetary missions. J. Guid. Control Dyn. 2021, 44, 1440–1453. [Google Scholar] [CrossRef]
- Marcucci, T.; Umenberger, J.; Parrilo, P.A.; Tedrake, R. Shortest paths in graphs of convex sets. arXiv 2021, arXiv:2101.11565v3. [Google Scholar]
- Noreen, I.; Khan, A.; Habib, Z.T. A comparison of RRT, RRT* and RRT*-smart path planning algorithms. Int. J. Comput. Sci. Netw. Secur. 2011, 16, 20. [Google Scholar]
- Warren, C.W.E.F. Global path planning using artificial potential fields. In Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 316–317. [Google Scholar]
- Ferguson, D.; Likhachev, M.; Stentz, A. A guide to heuristic-based path planning. In Proceedings of the International Workshop on Planning under Uncertainty for Autonomous Systems, International Conference on Automated Planning and Scheduling (ICAPS), Monterey, CA, USA, 5–10 June 2005; pp. 9–18. [Google Scholar]
- Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-angle path planning on grids. J. Artif. Intell. Res. 2010, 39, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Otte, M.W.T. A Survey of Machine Learning Approaches to Robotic Path-Planning; University of Colorado at Boulder: Boulder, CO, USA, 2015. [Google Scholar]
- Zhang, J.; Xia, Y.; Shen, G. A novel learning-based global path planning algorithm for planetary rovers. Neurocomputing 2019, 361, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Wang, S. A Review of Mobile Robot Path Planning Based on Deep Reinforcement Learning Algorithm. Proc. J. Phys. Conf. Ser. 2021, 2138, 1. [Google Scholar] [CrossRef]
- Pflueger, M.; Agha, A.; Sukhatme, G.S. Rover-IRL: Inverse reinforcement learning with soft value iteration networks for planetary rover path planning. IEEE Robot. Autom. Lett. 2019, 4, 1387–1394. [Google Scholar] [CrossRef]
- Markus, W.; Peter, O.; Ingmar, P. Rover-IRL: Maximum Entropy Deep Inverse Reinforcement Learning. arXiv 2015, arXiv:1507.04888. [Google Scholar]
- Ratliff, N.D.; Silver, D.; Bagnell, J.; Andrew, T. Learning to search: Functional gradient techniques for imitation learning. Auton. Robot. 2009, 27, 25–53. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ono, M.; Ingham, M.D.; Murray, R.M.; Ames, A.D. Risk-averse planning under uncertainty. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 3305–3312. [Google Scholar]
- Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; Abbeel, P. Value iteration networks. arXiv 2016, arXiv:1602.02867. [Google Scholar]
- Ma, N.; Wang, J.; Liu, J.; Meng, M.Q.-H. Conditional Generative Adversarial Networks for Optimal Path Planning. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 662–671. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhang, T.; Wang, J.; Meng, M.Q.-H. Generative Adversarial Network based Heuristics for Sampling-based Path Planning. arXiv 2020, arXiv:2012.03490. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Soboleva, N.; Yakovlev, K. GAN Path Finder: Preliminary Results. In Proceedings of the Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), Kassel, Germany, 23–26 September 2019; pp. 316–324. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Dalmia, S. Constraint-Based Circuit Design Using Generative Adversarial Networks. Master’s Thesis, Rijksuniversitait Groningen, Groningen, The Netherlands, 2020. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2013, 7, 36322–36333. [Google Scholar] [CrossRef]
- Jabbar, A.; Li, X.; Omar, B. A survey on generative adversarial networks: Variants, applications, and training. ACM Comput. Surv. (CSUR) 2021, 54, 1–49. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Deng, L.; Wang, F.; Liu, F.; Lu, Y.; Li, S. A novel in situ compression method for CFD data based on generative adversarial network. J. Vis. 2019, 22, 95–108. [Google Scholar] [CrossRef]
- Dash, A.; Ye, J.; Wang, G. A review of Generative Adversarial Networks (GANs) and its applications in a wide variety of disciplines–From Medical to Remote Sensing. arXiv 2021, arXiv:2110.01442. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; Volume 25. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Liu, M.-Y.; Breuel, T.; Kautz, J. Unsupervised image-to-image translation networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30. [Google Scholar]
- Lee, T.-K.; Baek, S.-H.; Choi, Y.-H.; Oh, S.-Y. Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. Robot. Auton. Syst. 2011, 59, 801–812. [Google Scholar] [CrossRef]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Borji, A. Pros and cons of gan evaluation measures. Comput. Vis. Image Underst. 2019, 179, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 7. [Google Scholar]
- Chen, Q.; Koltun, V. Photographic image synthesis with cascaded refinement networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1511–1520. [Google Scholar]
- Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8798–8807. [Google Scholar]
- Richter, S.R.; Al Haija, H.A.; Koltun, V. Enhancing photorealism enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1. [Google Scholar] [CrossRef]
Network ID | Network Description | Dataset ID | Dataset Size | Goal Size |
---|---|---|---|---|
01 | Baseline | 01 | 44,500 | 1 × 1 |
02 | 4 × 4 × 512 bottleneck | 02 | 110,500 | 1 × 1 |
03 | 1 × 1 × 512 bottleneck | 03 | 110,500 | 4 × 4 |
Experiment ID | Final Epoch OFID | Success Rate |
---|---|---|
50.16.01.01 | 38.31 | 38.45% |
150.16.01.01 | 30.29 | 43.68% |
50.16.01.02 | 29.21 | 47.52% |
200.16.03.02 | 27.07 | 48.62% |
200.128.02.02 | 27.16 | N/A |
80.16.02.02 | 19.88 | 56.69% |
150.16.02.03 | 10.70 | 73.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daddi, G.; Notaristefano, N.; Stesina, F.; Corpino, S. Assessing an Image-to-Image Approach to Global Path Planning for a Planetary Exploration. Aerospace 2022, 9, 721. https://doi.org/10.3390/aerospace9110721
Daddi G, Notaristefano N, Stesina F, Corpino S. Assessing an Image-to-Image Approach to Global Path Planning for a Planetary Exploration. Aerospace. 2022; 9(11):721. https://doi.org/10.3390/aerospace9110721
Chicago/Turabian StyleDaddi, Guglielmo, Nicolaus Notaristefano, Fabrizio Stesina, and Sabrina Corpino. 2022. "Assessing an Image-to-Image Approach to Global Path Planning for a Planetary Exploration" Aerospace 9, no. 11: 721. https://doi.org/10.3390/aerospace9110721
APA StyleDaddi, G., Notaristefano, N., Stesina, F., & Corpino, S. (2022). Assessing an Image-to-Image Approach to Global Path Planning for a Planetary Exploration. Aerospace, 9(11), 721. https://doi.org/10.3390/aerospace9110721