AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications
Abstract
:1. Introduction
- Hardware. Sensors installed or retrofitted in physical assets or systems or components.
- Data acquisition. Data capturing, recording, and transfer between the monitored asset and the data storage and data transformation so data can be stored in a useful form.
- Data storage and management. A platform on the premises or in the cloud to ensure data storage, availability, and efficient transfer processes.
- Data analytics. Data preprocessing so algorithms are fed with the right input and the development of prognostic algorithms and models (e.g., machine learning and AI) to identify patterns or other useful information (e.g., remaining useful life (RUL) and deterioration).
- Decision support. Tools used (e.g., digital twins) to determine actions based on the provided information.
2. N-CMAPSS Database and Generalised Additive Model
2.1. N-CMAPSS
2.1.1. Dataset Composition
- Flight operational parameters;
- Engine performance parameters, similar to physical engines;
- Virtual measurements, which include engine station characteristics that are not normally available or require special sensors or models to be measured and determined;
- Health parameters.
2.1.2. Feature Selection
2.2. Generalised Additive Model (GAM)
2.2.1. Applications of the GAM and the State of the Art
2.2.2. Implementation of the GAM in EGT Prediction
3. Model Development
3.1. Data Preparation
3.2. Hyperparameter Selection
3.3. Model Summary
3.4. Performance Metrics
4. EGT Prediction Results
4.1. DS01
4.2. DS03
4.3. DS08a
5. Trustworthiness Considerations: Data Concepts
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apostolidis, A.; Stamoulis, K.P. A Health Monitoring Modelling Case Study: Humidity Effects on Engine Deterioration Prediction. MATEC Web Conf. 2021, 349, 03011. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Kefalas, M.; Yang, K.; Apostolidis, A.; Olhofer, M.; Limmer, S.; Bäck, T.H. A Review: Prognostics and Health Management in Automotive and Aerospace. Int. J. Progn. Health Manag. 2019, 10, 1–35. [Google Scholar] [CrossRef]
- Rajamani, R. Condition-Based Maintenance in Aviation: The History, The Business and The Technology, 1st ed.; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Scott, M.J.; Verhagen, W.J.C.; Bieber, M.T.; Marzocca, P. A Systematic Literature Review of Predictive Maintenance for Defence Fixed-Wing Aircraft Sustainment and Operations. Sensors 2022, 22, 7070. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.; Sankararaman, S.; de Medeiros, I.P.; Nascimento, C., Jr.; Prendinger, H.; Henriques, E.M. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Comput. Ind. Eng. 2018, 115, 41–53. [Google Scholar] [CrossRef]
- Fentaye, A.D.; Ul-Haq Gilani, S.I.; Baheta, A.T.; Li, Y.G. Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233, 786–802. [Google Scholar] [CrossRef] [Green Version]
- Protopapadakis, G.; Apostolidis, A.; Kalfas, A.I. Explainable and Interpretable AI-Assisted Remaining Useful Life Estimation for Aeroengines. In Proceedings of the ASME Turbo Expo 2022, Rotterdam, The Netherlands, 13–17 June 2022. V002T05A002. [Google Scholar] [CrossRef]
- Apostolidis, A.; Pelt, M.; Stamoulis, K.P. Aviation Data Analytics in MRO Operations: Prospects and Pitfalls. In Proceedings of the 2020 Annual Reliability and Maintainability Symposium (RAMS), San Jose, CA, USA, 25–28 January 2020. [Google Scholar] [CrossRef]
- Stamoulis, K. Innovations in the Aviation MRO: Adaptive, Digital, and Sustainable Tools for Smarter Engineering and Maintenance, 1st ed.; Eburon Academic Publishers: Amsterdam, The Netherlands, 2022; pp. 15–16. [Google Scholar]
- Kefalas, M.; de Santiago Rojo, J., Jr.; Apostolidis, A.; van den Herik, D.; van Stein, B.; Bäck, T. Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines. J. Aerosp. Inf. Syst. 2022, 19, 447–454. [Google Scholar] [CrossRef]
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Tahan, M.; Tsoutsanis, E.; Muhammad, M.; Karim, Z.A. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Appl. Energy 2017, 198, 122–144. [Google Scholar] [CrossRef]
- Von Moll, A.; Behbahani, A.R.; Fralick, G.C.; Wrbanek, J.D.; Hunter, G.W. A Review of Exhaust Gas Temperature Sensing Techniques for Modern Turbine Engine Controls. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- EASA. Concept Paper: First Usable Guidance for Level 1 Machine Learning Applications. Available online: https://www.easa.europa.eu/en/downloads/126648/en (accessed on 10 June 2022).
- MATLAB, version 7.10.0 (R2010a); MathWorks Inc.: Natick, MA, USA, 2010.
- NASA, C-MAPSS Aircraft Engine Simulator Data. Available online: https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data/xaut-bemq (accessed on 10 June 2021).
- EASA, Flight Data Monitoring on ATR Aircraft. Available online: https://www.easa.europa.eu/sites/default/files/dfu/16T0153_ATR_FDM_2016.pdf (accessed on 14 September 2022).
- Boslaugh, S. Statistics in a Nutshell, 2nd ed.; O’Reilly Media: Cambridge, UK, 2014. [Google Scholar]
- Shukla, B.; Fan, I.S.; Jennions, I. Opportunities for Explainable Artificial Intelligence in Aerospace Predictive Maintenance. In Proceedings of the PHM Society European Conference, Turin, Italy, 1–3 July 2020; Volume 5, pp. 5–11. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Lou, Y.; Caruana, R.; Gehrke, J. Intelligible Models for Classification and Regression. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 150–158. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Molnar, C. Interpretable Machine Learning. 2019. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 22 August 2022).
- Vislocky, R.L.; Fritsch, J.M. Generalized Additive Models versus Linear Regression in Generating Probabilistic MOS Forecasts of Aviation Weather Parameters. Weather Forecast. 1995, 10, 669–680. [Google Scholar] [CrossRef]
- Monstein, R.; Capone, P.; Dettling, M.; Vrdoljak, M. Determination of Model Structure from Flight Test with Generalized Additive Models. J. Aircr. 2019, 56, 1367–1375. [Google Scholar] [CrossRef]
- Goyal, V.; Xu, M.; Kapat, J.; Vesely, L. Prediction of gas turbine performance using machine learning methods. In Proceedings of the ASME Turbo Expo 2020, Virtual Conference, Online, 21–25 September 2020; Volume 6. V006T09A004. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1, 297–310. [Google Scholar] [CrossRef]
- Larsen, K. GAM: The Predictive Modeling Silver Bullet. 2015. Available online: https://multithreaded.stitchfix.com/assets/files/gam.pdf (accessed on 24 August 2022).
- pyGAM. Available online: https://pygam.readthedocs.io/en/latest/ (accessed on 24 July 2022).
- Towards Data Science: What Is Bias? Available online: https://towardsdatascience.com/what-is-ai-bias-6606a3bcb814 (accessed on 28 September 2022).
- Smartbridge, Data Done Right: 6 Dimensions of Data Quality. Available online: https://smartbridge.com/data-done-right-6-dimensions-of-data-quality/ (accessed on 28 September 2022).
- Stonebraker, M.; Bruckner, D.; Ilyas, I.F.; Beskales, G.; Cherniack, M.; Zdonik, S.B.; Pagan, A.; Xu, S. Data Curation at Scale: The Data Tamer System. In Proceedings of the 6th Biennial Conference on Innovative Data Systems Research (CDIR’13), Asilomar, CA, USA, 6–9 January 2013. [Google Scholar]
Name | # Units | Failure Modes | Fan | Low Pressure Compressor (LPC) | High Pressure Compressor (HPC) | High Pressure Turbine (HPT) | Low Pressure Turbine (LPT) | Size | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Efficiency | Mass Flow | Efficiency | Mass Flow | Efficiency | Mass Flow | Efficiency | Mass Flow | Efficiency | Mass Flow | ||||
DS01 | 10 | 1 | √ | 7.6 M | |||||||||
DS02 | 9 | 2 | √ | √ | √ | 6.5 M | |||||||
DS03 | 15 | 1 | √ | √ | √ | 9.8 M | |||||||
DS04 | 10 | 1 | √ | √ | 10.0 M | ||||||||
DS05 | 10 | 1 | √ | √ | 6.9 M | ||||||||
DS06 | 10 | 1 | √ | √ | √ | √ | 6.8 M | ||||||
DS07 | 10 | 1 | √ | √ | 7.2 M | ||||||||
DS08a | 54 | 1 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | 35.6 M |
Symbol | Description | Units |
---|---|---|
Wf | Fuel Flow | pps |
Nf | Physical fan speed | rpm |
Nc | Physical core speed | rpm |
T24 | Total Temperature at LPC outlet | °R |
T30 | Total Temperature at HPC outlet | °R |
T48 | Total Temperature at HPT outlet | °R |
T50 | Total Temperature at LPT outlet | °R |
P15 | Total pressure in bypass duct | psia |
P20 | Total pressure at fan outlet | psia |
P21 | Total pressure at LPC inlet | psia |
P24 | Total pressure at LPC outlet | psia |
Ps30 | Static pressure at HPC outlet | psia |
P40 | Total pressure at combustor outlet | psia |
P50 | Total pressure at LPT outlet | psia |
Hyperparameter | Value |
---|---|
n_splines | 10 |
λi | 0.6 |
Percentage training set | 70% |
Percentage test set | 30% |
Unit | RMSE Training | RMSE Test | R2 Training | R2 Test |
---|---|---|---|---|
1 | 0.5769 | 1.714 | 0.9999 | 0.9991 |
2 | 1.005 | 2.636 | 0.9997 | 0.9981 |
3 | 0.8482 | 1.463 | 0.9998 | 0.9994 |
4 | 0.6068 | 1.89 | 0.9998 | 0.9989 |
5 | 0.7985 | 2.067 | 0.9998 | 0.9987 |
6 | 0.8289 | 1.992 | 0.9998 | 0.9989 |
7 | 0.6169 | 2.214 | 0.9998 | 0.9985 |
8 | 0.8397 | 1.728 | 0.9998 | 0.9992 |
9 | 0.5793 | 2.675 | 0.9998 | 0.998 |
10 | 0.9154 | 2.149 | 0.9997 | 0.9988 |
Unit | RMSE Training | RMSE Test | R2 Training | R2 Test |
---|---|---|---|---|
1 | 0.567 | 0.9842 | 0.9999 | 0.9997 |
2 | 0.8572 | 1.676 | 0.9998 | 0.9993 |
3 | 0.9011 | 1.935 | 0.9997 | 0.999 |
4 | 0.7339 | 1.446 | 0.9998 | 0.9994 |
5 | 0.6137 | 1.143 | 0.9998 | 0.9996 |
6 | 0.9642 | 1.988 | 0.9997 | 0.9988 |
7 | 0.8084 | 2.057 | 0.9998 | 0.9989 |
8 | 1.076 | 2.873 | 0.9996 | 0.9977 |
9 | 0.6292 | 2.088 | 0.9998 | 0.9987 |
10 | 1.115 | 4.532 | 0.9996 | 0.9937 |
11 | 1.053 | 1.848 | 0.9996 | 0.999 |
12 | 0.614 | 1.298 | 0.9998 | 0.9995 |
13 | 1.145 | 3.893 | 0.9996 | 0.9961 |
14 | 0.6284 | 1.551 | 0.9998 | 0.9992 |
15 | 0.9011 | 1.565 | 0.9997 | 0.9982 |
Unit | RMSE Training | RMSE Test | R2 Training | R2 Test |
---|---|---|---|---|
1 | 0.6618 | 4.372 | 0.9998 | 0.9944 |
2 | 0.9962 | 1.545 | 0.9997 | 0.9993 |
3 | 0.5946 | 3.079 | 0.9998 | 0.9969 |
4 | 0.9608 | 7.239 | 0.9997 | 0.9865 |
5 | 0.9292 | 3.906 | 0.9997 | 0.9959 |
6 | 0.9435 | 1.973 | 0.9997 | 0.9989 |
7 | 0.7984 | 4.632 | 0.9998 | 0.9951 |
8 | 0.8011 | 1.472 | 0.9998 | 0.9994 |
9 | 0.667 | 1.751 | 0.9998 | 0.9992 |
10 | 0.6965 | 5.281 | 0.9998 | 0.993 |
11 | 0.878 | 1.098 | 0.9998 | 0.9996 |
12 | 0.9649 | 5.705 | 0.9997 | 0.9915 |
13 | 1.529 | 12.78 | 0.9993 | 0.9536 |
14 | 1.045 | 1.246 | 0.9997 | 0.9995 |
15 | 0.5901 | 2.227 | 0.9999 | 0.9986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolidis, A.; Bouriquet, N.; Stamoulis, K.P. AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications. Aerospace 2022, 9, 722. https://doi.org/10.3390/aerospace9110722
Apostolidis A, Bouriquet N, Stamoulis KP. AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications. Aerospace. 2022; 9(11):722. https://doi.org/10.3390/aerospace9110722
Chicago/Turabian StyleApostolidis, Asteris, Nicolas Bouriquet, and Konstantinos P. Stamoulis. 2022. "AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications" Aerospace 9, no. 11: 722. https://doi.org/10.3390/aerospace9110722
APA StyleApostolidis, A., Bouriquet, N., & Stamoulis, K. P. (2022). AI-Based Exhaust Gas Temperature Prediction for Trustworthy Safety-Critical Applications. Aerospace, 9(11), 722. https://doi.org/10.3390/aerospace9110722