Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros
Abstract
:1. Introduction
- CMGs are employed as reactionless manipulator actuators of a SRS to reduce the strong dynamic coupling between the platform and the manipulator.
- A new integrated RBFNN-based non-singular finite control scheme is proposed for the SRS with lumped uncertainties. In the control method, a new weight update law applied to RBFNN is proposed. With the advantages of RBFNN and ANTSM, the controller has high control accuracy, fast learning speed and finite-time convergence. Compared with the traditional sliding mode control, the application range of the controller is extended by ignoring the upper bound of the lumped uncertainties.
- Rigorous theoretical proof is achieved by the Lyapunov method with a high mathematical standard. In the proof, the symbolic function is replaced by the saturation function to avoid the chattering problem for practical implementations.
2. System Description
3. Equations of Motion
3.1. Reference Frames
3.2. Dynamics Analysis
3.3. Kinematics Analysis
4. Controller Design
4.1. Problem Statement
4.2. ANTSM Controller for Manipulators
4.2.1. RBF Neural Network
4.2.2. Sliding Surface
4.2.3. Control Law Design
4.3. Kinematic Controller for Platform
4.3.1. Attitude Control
4.3.2. Position Control
4.4. Inverse Dynamics Controller for System
4.5. Stability Analysis
5. Numerical Simulation
5.1. Simulation Parameters
5.2. Simulation Results
5.2.1. Demonstration of Algorithm Effectiveness
5.2.2. Comparison with Different Control Laws
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A Review of Space Robotics Technologies for On-Orbit Servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Shan, J. Continuous Integral Sliding Mode Control for Space Manipulator with Actuator Uncertainties. Aerosp. Sci. Technol. 2020, 106, 106192. [Google Scholar] [CrossRef]
- Shan, M.; Guo, J.; Gill, E. Review and Comparison of Active Space Debris Capturing and Removal Methods. Prog. Aerosp. Sci. 2016, 80, 18–32. [Google Scholar] [CrossRef]
- Palma, P.; Seweryn, K.; Rybus, T. Impedance Control Using Selected Compliant Prismatic Joint in a Free-Floating Space Manipulator. Aerospace 2022, 9, 406. [Google Scholar] [CrossRef]
- Xia, P.; Luo, J.; Wang, M.; Yuan, J. Constrained Compliant Control for Space Robot Postcapturing Uncertain Target. J. Aerosp. Eng. 2019, 32, 04018117. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wang, Y.; Liang, J.; Zhang, L.; Pan, G. Detumbling Strategy Based on Friction Control of Dual-Arm Space Robot for Capturing Tumbling Target. Chin. J. Aeronaut. 2020, 33, 1093–1106. [Google Scholar] [CrossRef]
- Hu, Q.; Guo, C.; Zhang, Y.; Zhang, J. Recursive Decentralized Control for Robotic Manipulators. Aerosp. Sci. Technol. 2018, 76, 374–385. [Google Scholar] [CrossRef]
- Jia, Y.; Misra, A.K. Trajectory Planning for a Space Robot Actuated by Control Moment Gyroscopes. J. Guid. Control. Dyn. 2018, 41, 1838–1842. [Google Scholar] [CrossRef]
- Feng, X.; Jia, Y.; Xu, S. Dynamics and Momentum Equalization Control of Redundant Space Robot with Control Moment Gyroscopes for Joint Actuation. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, USA, 13–16 September 2016. [Google Scholar]
- James, F.; Shah, S.V.; Singh, A.K.; Krishna, K.M.; Misra, A.K. Reactionless Maneuvering of a Space Robot in Precapture Phase. J. Guid. Control Dyn. 2016, 39, 2419–2425. [Google Scholar] [CrossRef]
- Peck, M.; Paluszek, M.; Thomas, S.; Mueller, J. Control-Moment Gyroscopes for Joint Actuation: A New Paradigm in Space Robotics. In Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, FL, USA, 30 January–1 February 2005. [Google Scholar]
- Peck, M. Low-Power, High-Agility Space Robotics. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, 15–18 August 2005. [Google Scholar]
- Brown, D. Control Moment Gyros as Space-Robotics Actuators. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Brown, D.; Peck, M. Energetics of Control Moment Gyroscopes as Joint Actuators. J. Guid. Control Dyn. 2009, 32, 1871–1883. [Google Scholar] [CrossRef]
- Shen, D.; Tang, L.; Hu, Q.; Guo, C.; Li, X.; Zhang, J. Space Manipulator Trajectory Tracking Based on Recursive Decentralized Finite-Time Control. Aerosp. Sci. Technol. 2020, 102, 105870. [Google Scholar] [CrossRef]
- Wang, X.; Shi, L.; Katupitiya, J. A Strategy to Decelerate and Capture a Spinning Object by a Dual-Arm Space Robot. Aerosp. Sci. Technol. 2021, 113, 106682. [Google Scholar] [CrossRef]
- Song, C.; Fei, S.; Cao, J.; Huang, C. Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control. Mathematics 2019, 7, 599. [Google Scholar] [CrossRef] [Green Version]
- Cong, B.; Liu, X.; Chen, Z. Improved Adaptive Sliding Mode Control for a Class of Second-Order Mechanical Systems: Improved Adaptive Sliding Mode Control. Asian J. Control 2013, 15, 1862–1866. [Google Scholar] [CrossRef]
- Yoo, D.S.; Chung, M.J. A Variable Structure Control with Simple Adaptation Laws for Upper Bounds on the Norm of the Uncertainties. IEEE Trans. Autom. Control 1992, 37, 860–865. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, S. Decentralized Adaptive Sliding Mode Control of a Space Robot Actuated by Control Moment Gyroscopes. Chin. J. Aeronaut. 2016, 29, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Misra, A.K. Robust Trajectory Tracking Control of a Dual-Arm Space Robot Actuated by Control Moment Gyroscopes. Acta Astronaut. 2017, 137, 287–301. [Google Scholar] [CrossRef]
- Xu, W.; Qu, S.; Zhao, L.; Zhang, H. An Improved Adaptive Sliding Mode Observer for Middle- and High-Speed Rotor Tracking. IEEE Trans. Power Electron. 2021, 36, 1043–1053. [Google Scholar] [CrossRef]
- Leeghim, H.; Choi, Y.; Bang, H. Adaptive Attitude Control of Spacecraft Using Neural Networks. Acta Astronaut. 2009, 64, 778–786. [Google Scholar] [CrossRef]
- Zou, A.-M.; Kumar, K.D. Adaptive Attitude Control of Spacecraft without Velocity Measurements Using Chebyshev Neural Network. Acta Astronaut. 2010, 66, 769–779. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Peng, H.; Zhang, L.; Hu, Y.; Su, H. Neural Fuzzy Approximation Enhanced Autonomous Tracking Control of the Wheel-Legged Robot under Uncertain Physical Interaction. Neurocomputing 2020, 410, 342–353. [Google Scholar] [CrossRef]
- Zou, A.-M.; Kumar, K.D.; Hou, Z.-G.; Liu, X. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network. IEEE Trans. Syst. Man Cybern. B 2011, 41, 950–963. [Google Scholar] [CrossRef]
- Zou, Y. Attitude Tracking Control for Spacecraft with Robust Adaptive RBFNN Augmenting Sliding Mode Control. Aerosp. Sci. Technol. 2016, 56, 197–204. [Google Scholar] [CrossRef]
- Nafia, N.; El Kari, A.; Ayad, H.; Mjahed, M. Robust Interval Type-2 Fuzzy Sliding Mode Control Design for Robot Manipulators. Robotics 2018, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Yu, X.; Man, Z. Non-Singular Terminal Sliding Mode Control of Rigid Manipulators. Automatica 2002, 38, 2159–2167. [Google Scholar] [CrossRef]
- Nojavanzadeh, D.; Badamchizadeh, M. Adaptive Fractional-Order Non-Singular Fast Terminal Sliding Mode Control for Robot Manipulators. IET Control Theory Appl. 2016, 10, 1565–1572. [Google Scholar] [CrossRef]
- Mohammadi Asl, R.; Shabbouei Hagh, Y.; Palm, R. Robust Control by Adaptive Non-Singular Terminal Sliding Mode. Eng. Appl. Artif. Intell. 2017, 59, 205–217. [Google Scholar] [CrossRef]
- Abooee, A.; Arefi, M.M.; Sedghi, F.; Abootalebi, V. Robust Nonlinear Control Schemes for Finite-Time Tracking Objective of a 5-DOF Robotic Exoskeleton. Int. J. Control 2019, 92, 2178–2193. [Google Scholar] [CrossRef]
- Abooee, A.; Hayeri Mehrizi, M.; Arefi, M.M.; Yin, S. Finite-Time Sliding Mode Control for a 3-DOF Fully Actuated Autonomous Surface Vehicle. Trans. Inst. Meas. Control 2021, 43, 371–389. [Google Scholar] [CrossRef]
- Guo, S.; Li, D.; Meng, Y.; Fan, C. Task Space Control of Free-Floating Space Robots Using Constrained Adaptive RBF-NTSM. Sci. China Technol. Sci. 2014, 57, 828–837. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Kong, L.; Chen, W.; Fu, Q.; Peng, K. Neural Networks-Based Fault Tolerant Control of a Robot via Fast Terminal Sliding Mode. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 4091–4101. [Google Scholar] [CrossRef]
- Wang, X. Finite-Time Gradient Descent-Based Adaptive Neural Network Finite-Time Control Design for Attitude Tracking of a 3-DOF Helicopter. arXiv 2021, arXiv:2107.12924. [Google Scholar]
- Vijay, M.; Jena, D. Backstepping Terminal Sliding Mode Control of Robot Manipulator Using Radial Basis Functional Neural Networks. Comput. Electr. Eng. 2018, 67, 690–707. [Google Scholar] [CrossRef]
- Wang, L.; Chai, T.; Zhai, L. Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics. IEEE Trans. Ind. Electron. 2009, 56, 3296–3304. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Lu, B. Trajectory Tracking Control for Chain-Series Robot Manipulator: Robust Adaptive Fuzzy Terminal Sliding Mode Control with Low-Pass Filter. Int. J. Adv. Robot. Syst. 2020, 17, 172988142091698. [Google Scholar] [CrossRef]
- Xia, X.; Jia, Y.; Xu, S.; Wang, X. An Adaptive Nonsingular Terminal Sliding Mode Tracking Control Using Neural Networks for Space Manipulators Actuated by CMGs. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, USA, 19–23 August 2018; Volume 167, pp. 3185–3198. [Google Scholar]
- Wang, X.; Xu, B.; Cheng, Y.; Wang, H.; Sun, F. Robust Adaptive Learning Control of Space Robot for Target Capturing Using Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–11. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Y.; Lan, Q.; Zhang, T.; Tu, H. Trajectory Planning and Low-Chattering Fixed-Time Nonsingular Terminal Sliding Mode Control for a Dual-Arm Free-Floating Space Robot. Robotica 2022, 40, 625–645. [Google Scholar] [CrossRef]
- Moosavian, S.A.A.; Papadopoulos, E. Free-Flying Robots in Space: An Overview of Dynamics Modeling, Planning and Control. Robotica 2007, 25, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhang, J. Dynamics and Trajectory Planning for Reconfigurable Space Multibody Robots. J. Mech. Des. 2015, 137, 092304. [Google Scholar] [CrossRef]
- Banerjee, A.K. Flexible Multibody Dynamics: Efficient Formulations and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Feng, X.; Jia, Y.; Xu, S. Dynamics of Flexible Multibody Systems with Variable-Speed Control Moment Gyroscopes. Aerosp. Sci. Technol. 2018, 79, 554–569. [Google Scholar] [CrossRef]
- Huang, P.; Yuan, J.; Liang, B. Adaptive Sliding-Mode Control of Space Robot during Manipulating Unknown Objects. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007; pp. 2907–2912. [Google Scholar]
- Feng, Y.; Yu, X.; Man, Z. Non-Singular Terminal Sliding Mode Control and Its Application for Robot Manipulators. In Proceedings of the the 2001 IEEE International Symposium on Circuits and Systems, Sydney, Australia, 6–9 May 2001; Volume 3, pp. 545–548. [Google Scholar]
- Wheeler, G.; Su, C.; Stepanenko, Y. A Sliding Mode Controller with Improved Adaptation Laws for the Upper Bounds on the Norm of Uncertainties. Automatica 1998, 34, 1657–1661. [Google Scholar] [CrossRef]
Body Number | |||||
---|---|---|---|---|---|
True | Nominal | True | Nominal | ||
1600 | |||||
1.37 | 1.2 | ||||
24.72 | 22 | ||||
24.86 | 22 |
Body Number | ||||
---|---|---|---|---|
0 | 0.5π | 0.1 | ||
1.825 | 0 | 0.54 | ||
1.8825 | 0 | 0 |
Parameter | Value |
---|---|
Initial positions of the platform | |
Initial rotation angles of the platform | |
Initial linear velocities of the platform | |
Initial angular velocities of the platform | |
Initial joint angles | |
Initial joint speeds | |
Initial angular momentums |
Parameter | Value |
---|---|
The proportional gain | |
The derivative gain | |
The proportional gain | |
The derivative gain | |
The constant | |
The odd number | |
The odd number | |
The constant | |
Upper bound of the estimate error | |
The constant | |
Number of neurons | |
Initial of weight matrix | |
The gain matrix |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Jia, Y.; Wang, X.; Zhang, J. Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros. Aerospace 2022, 9, 730. https://doi.org/10.3390/aerospace9110730
Xia X, Jia Y, Wang X, Zhang J. Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros. Aerospace. 2022; 9(11):730. https://doi.org/10.3390/aerospace9110730
Chicago/Turabian StyleXia, Xinhui, Yinghong Jia, Xinlong Wang, and Jun Zhang. 2022. "Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros" Aerospace 9, no. 11: 730. https://doi.org/10.3390/aerospace9110730
APA StyleXia, X., Jia, Y., Wang, X., & Zhang, J. (2022). Neural-Network-Based Terminal Sliding Mode Control of Space Robot Actuated by Control Moment Gyros. Aerospace, 9(11), 730. https://doi.org/10.3390/aerospace9110730