Two-Scale Asymptotic Homogenization Method for Composite Kirchhoff Plates with in-Plane Periodicity
Abstract
:1. Introduction
- (1)
- The asymptotic expansion solutions of the fourth-order PDE with rapidly periodic oscillating coefficients were presented, and the accuracy of high-order perturbed terms was investigated quantitatively.
- (2)
- Constraint conditions for the unit cell problem were given and elaborated physically.
- (3)
- The influence functions were interpreted physically for a better understanding of the two-scale AHM.
- (4)
- The explicit analytically homogenized stiffness for periodic plates with layered structures was presented.
2. Asymptotic Homogenization of the Periodic Composite Plate
2.1. Dimensional Reduction to Composite Kirchhoff Plates with in-Plane Periodicity
2.2. Two-Scale Asymptotic Homogenization Method for 2D Periodic Kirchhoff Plates
3. Solutions for Unit Cell Problems
3.1. Constraint Conditions for Unit Cell Problems
3.2. Analytical Homogenized Stiffnesses for Periodic Layered Plates
3.3. Finite Element Formulations for Solving Unit Cell Problems
4. Physical Interpretation of AHM
- (1)
- The quasi-shear forces are zero for and , and the quasi-bending moments for is equal to zero. Compared with , has nonzero quasi-bending moments and nonzero quasi-shear forces, and their distributions are more complex than those of .
- (2)
- is self-balanced in the unit cell, and has nonzero values only at the interfaces of the matrix and inclusion as well as the boundaries, implying that is caused by the discontinuities of materials. Additionally, the simple distributions of shows that is the most fundamental quasi-load reflecting the inhomogeneity of unit cells, implying that is the primary perturbed term. Since at all nodes is not zero, captures more microscopic information compared with . In general, the AHM perturbed to the third order is accurate enough.
- (3)
- The unit of is , demonstrating that behaves as a moment. In fact, the first two columns of are the quasi-bending moments caused by the unit bending curvatures around the and axes, and the third column of denotes the quasi-torsional moment attributable to the unit torsional strain. Accordingly, represent three fundamental deformations caused by . Since is the product of and the second derivative of , see Equation (31), thus, the second derivative of acts as the modal coordinates in the superposition method.
- (4)
- The unit of is . Since the six columns of are independent, thus, denotes six independent microscopic deformations accordingly, and the third derivative of acts as the modal coordinates.
5. Numerical Examples
5.1. Free Vibrations
- Example 1: Free Vibration of a CCCC Single-Layer Periodic Plate
- Example 2: Free vibration of an SSSS four-layer periodic plate
- Inclusion: Young’s modulus ; Poisson’s ratio ; Density .
- Matrix: Young’s modulus ; Poisson’s ratio ; Density .
5.2. Static Problems
- Example 3: Static problem of a CFCF periodic layered plate
- Example 4: Static problem of an SFSF four-layer periodic plate
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bensoussan, A.; Lions, J.L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; North-Holland Publishing Company: New York, NY, USA, 1978; pp. 11–46. [Google Scholar]
- Bakhvalov, N.; Panasenko, G. Homogenisation: Averaging Processes in Periodic Media; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1989; pp. 12–29. [Google Scholar]
- Oleinik, O.A.; Shamaev, A.S.; Yosifian, G.A. Mathematical Problems in Elasticity and Homogenization; Elsevier Science Publishers: Amsterdam, The Netherlands, 2009; pp. 42–56. [Google Scholar]
- Xing, Y.F.; Gao, Y.H. Multiscale eigenelement method for periodical composites: A review. Chin. J. Aeronaut. 2019, 32, 104–113. [Google Scholar] [CrossRef]
- Xing, Y.F.; Du, C.Y. An improved multiscale eigenelement method of periodical composite structures. Compos. Struct. 2014, 118, 200–207. [Google Scholar] [CrossRef]
- Xing, Y.F.; Wang, X.M. An eigenelement method and two homogenization conditions. Acta. Mech. Sin. 2009, 25, 345–351. [Google Scholar] [CrossRef]
- Weinan, E.; Engquist, B.; Huang, Z. Heterogeneous multiscale method: A general methodology for multiscale modeling. Phys. Rev. B 2003, 67, 092101. [Google Scholar]
- Weinan, E.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E. Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2007, 2, 367–450. [Google Scholar]
- Berdichevskii, V.L. Variational-asymptotic method of constructing a theory of shells. J. Appl. Math. Mech. 1979, 43, 711–736. [Google Scholar] [CrossRef]
- Yu, W.B.; Tian, T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int. J. Solids Struct. 2007, 44, 3738–3755. [Google Scholar] [CrossRef] [Green Version]
- Charalambakis, N. Homogenization Techniques and Micromechanics. A Survey and Perspectives. Appl. Mech. Rev. 2010, 63, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Kanoute, P.; Boso, D.P.; Chaboche, J.L.; Schrefler, B.A. Multiscale Methods for Composites: A Review. Arch. Comput. Methods Eng. 2009, 16, 31–75. [Google Scholar] [CrossRef]
- Chung, P.W.; Tamma, K.K.; Namburu, R.R. Asymptotic expansion homogenization for heterogeneous media: Computational issues and applications. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1291–1301. [Google Scholar] [CrossRef]
- Hassani, B.; Hinton, E. A Review of Homogenization and Topology I—Homogenization Theory for Media with Periodic Structure. Comput. Struct. 1998, 69, 739–756. [Google Scholar] [CrossRef]
- Hassani, B.; Hinton, E. A review of homogenization and topology optimization II—Analytical and numerical solution of homogenization equations. Comput. Struct. 1998, 69, 719–738. [Google Scholar] [CrossRef]
- Xing, Y.F.; Chen, L. Accuracy of multiscale asymptotic expansion method. Compos. Struct. 2014, 112, 38–43. [Google Scholar] [CrossRef]
- Xing, Y.F.; Chen, L. Physical interpretation of multiscale asymptotic expansion method. Compos. Struct. 2014, 116, 694–702. [Google Scholar] [CrossRef]
- Gao, Y.H.; Xing, Y.F.; Huang, Z.W.; Li, M.; Yang, Y. An assessment of multiscale asymptotic expansion method for linear static problems of periodic composite structures. Eur. J. Mech. Solid. 2020, 81, 103951. [Google Scholar] [CrossRef]
- Cao, L.Q.; Cui, J.Z. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains. Numer. Math. 2004, 96, 525–581. [Google Scholar]
- Fish, J.; Wen, C.; Nagai, G. Non-local dispersive model for wave propagation in heterogeneous media: One-dimensional case. Int. J. Numer. Meth. Eng. 2002, 54, 331–346. [Google Scholar] [CrossRef]
- Fish, J.; Wen, C.; Nagai, G. Non-local dispersive model for wave propagation in heterogeneous media: Multi-dimensional case. Int. J. Numer. Meth. Eng. 2002, 54, 347–363. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, L.Q.; Wang, X. Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials. Comput. Methods Appl. Mech. Eng. 2009, 198, 2539–2554. [Google Scholar] [CrossRef]
- Kirchhoff, G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Für Die Reine Und Angew. Math. Crelles J. 1850, 40, 51–88. [Google Scholar]
- Brunelle, E. Buckling of transversely isotropic Mindlin plates. AIAA J. 1971, 9, 1018–1022. [Google Scholar] [CrossRef]
- Mindlin, R.D. Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic Elastic Plates. J. Appl. Mech. 1951, 18, 31–38. [Google Scholar] [CrossRef]
- Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 1945, 12, 69–77. [Google Scholar] [CrossRef]
- Khdeir, A.; Librescu, L. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II—Buckling and free vibration. Compos. Struct. 1988, 9, 259–277. [Google Scholar] [CrossRef]
- Levinson, M. An accurate, simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun. 1980, 7, 343–350. [Google Scholar] [CrossRef]
- Librescu, L.; Khdeir, A.A. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part I—Stress and displacement. Compos. Struct. 1988, 9, 189–213. [Google Scholar] [CrossRef]
- Lo, K.H.; Christensen, R.M.; Wu, E.M. A high-order theory of plate deformation—Part 1: Homogeneous plates. J. Appl. Mech. 1977, 44, 663–668. [Google Scholar] [CrossRef]
- Reddy, J.; Phan, N. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound. Vib. 1985, 98, 157–170. [Google Scholar] [CrossRef]
- Reddy, J.N. A Simple Higher-Order Theory for Laminated Composite Plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Shimpi, R.; Patel, H. Free vibrations of plate using two variable refined plate theory. J. Sound. Vib. 2006, 296, 979–999. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, D.; Ni, Z.; Zhou, C.; An, D.; Wang, B.; Li, R. New benchmark free vibration solutions of non-Lévy-type thick rectangular plates based on third-order shear deformation theory. Compos. Struct. 2021, 268, 113955. [Google Scholar] [CrossRef]
- Li, D. Layerwise theories of laminated composite structures and their applications: A review. Arch. Comput. Methods Eng. 2021, 28, 577–600. [Google Scholar] [CrossRef]
- Nelson, R.B.; Lorch, D.R. A refined theory for laminated orthotropic plates. J. Appl. Mech. 1974, 41, 177–183. [Google Scholar] [CrossRef]
- Nguyen, S.-N.; Lee, J.; Cho, M. Efficient higher-order zig-zag theory for viscoelastic laminated composite plates. Int. J. Solids Struct. 2015, 62, 174–185. [Google Scholar] [CrossRef]
- Reddy, J. A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Methods 1987, 3, 173–180. [Google Scholar] [CrossRef]
- Bert, C.W. Research on Dynamics of Composite and Sandwich Plates. Shock. Vib. Dig. 1982, 14, 17–34. [Google Scholar] [CrossRef]
- Reddy, J. A review of the literature on finite-element modeling of laminated composite plates. Shock. Vib. Dig. 1985, 17, 3–8. [Google Scholar] [CrossRef]
- Libove, C.; Hubka, R.E. Elastic Constants for Corrugated-core Sandwich Plates; Technical Note 2289; NACA: Washington, DC, USA, 1951. [Google Scholar]
- Briassoulis, D. Equivalent orthotropic properties of corrugated sheets. Comput. Struct. 1986, 23, 129–138. [Google Scholar] [CrossRef]
- Richard, A.S.; Milind, M.L. Transverse Stiffness of a Sinusoidally Corrugated Plate. Mech. Struct. Mach. 1995, 23, 439–451. [Google Scholar]
- Samanta, A.; Mukhopadhyay, M. Finite element static and dynamic analyses of folded plates. Eng. Struct. 1999, 21, 277–287. [Google Scholar] [CrossRef]
- Kress, G.; Winkler, M. Corrugated laminate homogenization model. Compos. Struct. 2010, 92, 795–810. [Google Scholar] [CrossRef]
- Xia, Y.; Friswell, M.I.; Flores, E. Equivalent models of corrugated panels. Int. J. Solids. Struct. 2012, 49, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Lok, T.S.; Cheng, Q.H.; Heng, L. Equivalent stiffness parameters of truss-core sandwich panel. In Proceedings of the Ninth International Offshore and Polar Engineering Conference, Brest, France, 30 May–4 June 1999. [Google Scholar]
- Lok, T.S.; Cheng, Q.H. Elastic Stiffness Properties and Behavior of Truss-Core Sandwich Panel. J. Struct. Eng. 2000, 126, 552–559. [Google Scholar] [CrossRef]
- Fung, T.C.; Tan, K.H.; Lok, T.S. Analysis of C-core sandwich plate decking. In Proceedings of the Third International Offshore and Polar Engineering Conference, Singapore, 6–11 June 1993. [Google Scholar]
- Fung, T.C.; Tan, K.H.; Lok, T.S. Shear Stiffness DQy for C-Core Sandwich Panels. J. Struct. Eng. 1996, 122, 958–966. [Google Scholar] [CrossRef]
- Fung, T.-C.; Tan, K.-H.; Lok, T.-S. Elastic constants for Z-core sandwich panels. J. Struct. Eng. 1994, 120, 3046–3055. [Google Scholar] [CrossRef]
- Leekitwattana, M.; Boyd, S.W.; Shenoi, R.A. Evaluation of the transverse shear stiffness of a steel bi-directional corrugated-strip-core sandwich beam. J. Constr. Steel. Res. 2011, 67, 248–254. [Google Scholar] [CrossRef]
- Nasution, M.R.E.; Watanabe, N.; Kondo, A.; Yudhanto, A. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction. Compos. Sci. Technol. 2014, 97, 63–73. [Google Scholar] [CrossRef]
- Cai, Y.W.; Xu, L.; Cheng, G.D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int. J. Solids. Struct. 2014, 51, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.Y.; Li, C.Y.; Wang, D.D.; Wu, C.T. Consistent multiscale analysis of heterogeneous thin plates with smoothed quadratic Hermite triangular elements. Int. J. Mech. Mater. Des. 2015, 12, 1–24. [Google Scholar] [CrossRef]
- Kalamkarov, A.L. Composite and Reinforced Elements of Constructions; John Wiley & Sons: New York, NY, USA, 1992; pp. 1–20. [Google Scholar]
- Kolpakov, A.G. Variational principles for stiffnesses of a non-homogeneous plate. J. Mech. Phys. Solids. 1999, 47, 2075–2092. [Google Scholar] [CrossRef]
- Kolpakov, A.G. Stressed Composite Structures: Homogenized Models for Thin-Walled Nonhomogeneous Structures with Initial Stresses; Springer: Berlin, Germany, 2004; pp. 21–145. [Google Scholar]
- Faraci, D.; Comi, C.; Marigo, J.J. Band Gaps in Metamaterial Plates: Asymptotic Homogenization and Bloch-Floquet Approaches. J. Elast. 2022, 148, 55–79. [Google Scholar] [CrossRef]
- Allaire, G. Nonlinear Partial Differential Equations and Their Applications: College de France Seminar; John Wiley & Sons: New York, NY, USA, 1994; pp. 1–14. [Google Scholar]
- Allaire, G. Homogenization and Two-Scale Convergence. SIAM J. Math. Anal. 1992, 23, 1482–1518. [Google Scholar] [CrossRef]
- Pavliotis, G.; Stuart, A. Multiscale Methods: Averaging and Homogenization; Springer Science & Business Media: New York, NY, USA, 2008; pp. 263–271. [Google Scholar]
- Huang, Z.W.; Xing, Y.F.; Gao, Y.H. A two-scale asymptotic expansion method for periodic composite Euler beams. Compos. Struct. 2020, 241, 112033. [Google Scholar] [CrossRef]
- Cook, R.D. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: New York, NY, USA, 2007; pp. 489–495. [Google Scholar]
- Yang, Q.S.; Becker, W. Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions. Comput. Mater. Sci. 2004, 31, 169–180. [Google Scholar] [CrossRef]
Order | Frequency/Hz (Relative Error) | ||
---|---|---|---|
3D FEM | 2D FEM | HOM | |
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Order | 3D FEM | HOM |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 |
Order | Frequency/Hz (Relative Error) | ||
---|---|---|---|
3D FEM | 2D FEM | HOM | |
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Order | 3D FEM | HOM |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 |
Perturbed Terms | ||
---|---|---|
HOM | 2.6404 | 10.0475 |
AHM2 | 2.5986 | 2.7112 |
AHM3 | 2.6003 | 1.4978 |
Perturbed Terms | |||
---|---|---|---|
HOM | 0.6897 | 4.1701 | 2.5050 |
AHM2 | 0.5457 | 2.0187 | 1.8187 |
AHM3 | 0.5603 | 1.8169 | 1.6351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Xing, Y.; Gao, Y. Two-Scale Asymptotic Homogenization Method for Composite Kirchhoff Plates with in-Plane Periodicity. Aerospace 2022, 9, 751. https://doi.org/10.3390/aerospace9120751
Huang Z, Xing Y, Gao Y. Two-Scale Asymptotic Homogenization Method for Composite Kirchhoff Plates with in-Plane Periodicity. Aerospace. 2022; 9(12):751. https://doi.org/10.3390/aerospace9120751
Chicago/Turabian StyleHuang, Zhiwei, Yufeng Xing, and Yahe Gao. 2022. "Two-Scale Asymptotic Homogenization Method for Composite Kirchhoff Plates with in-Plane Periodicity" Aerospace 9, no. 12: 751. https://doi.org/10.3390/aerospace9120751
APA StyleHuang, Z., Xing, Y., & Gao, Y. (2022). Two-Scale Asymptotic Homogenization Method for Composite Kirchhoff Plates with in-Plane Periodicity. Aerospace, 9(12), 751. https://doi.org/10.3390/aerospace9120751