Whirl Flutter Suppression of Tiltrotor Aircraft Using Actively Controlled Aileron
Abstract
:1. Introduction
2. Aeroelastic Model
2.1. Definition of Coordinate Systems
2.2. Hamilton Principle
2.3. Flexible Wing Model
2.4. Nacelle Model
2.5. Rotor Model
2.6. Aerodynamics of the Aileron
2.7. Model Validation I
2.8. Model Validation II
3. Active Controller and State Observer
3.1. Active Controller Based on LQR Algorithm
3.2. State Observer
4. Simulation Results
4.1. Model Configuration
4.2. Whirl Flutter Suppression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, J.S.; Jun, S.N.; Lee, M.K.; Kim, J.M. Design optimization framework for tiltrotor composite wings considering whirl flutter stability. Compos. Part B-Eng. 2010, 41, 257–267. [Google Scholar] [CrossRef]
- Kim, T.S.; Lim, J.H.; Shin, A.J.; Kim, D.H. Structural design optimization of a tiltrotor aircraft composite wing to enhance whirl flutter stability. Compos. Struct. 2013, 95, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Stodieck, O.; Cooper, J.; Weaver, P.M.; Kealy, P. Optimization of tow-steered composite wing laminates for aeroelastic tailoring. AIAA J. 2015, 53, 2203–2215. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Kim, S.H.; Jung, S.N.; Lee, M.K. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites. Smart Mater. Struct. 2010, 20, 015001. [Google Scholar] [CrossRef]
- Lake, R.C.; Nixon, M.W.; Wilbur, M.L.; Singleton, J.D.; Mirick, P.H. Demonstration of an elastically coupled twist control concept for tilt rotor blade application. AIAA J. 2015, 32, 1549–1551. [Google Scholar] [CrossRef]
- Belardo, M.; Marano, A.D.; Beretta, J.; Diodati, G.; Graziano, M.; Capasso, M.; Ariola, P.; Orlando, S.; Di Caprio, F.; Paletta, N.; et al. Wing structure of the next-generation civil tiltrotor: From concept to preliminary design. Aerospace 2021, 8, 102. [Google Scholar] [CrossRef]
- Sandilya, K. Optimization of Composite Tiltrotor Wings with Extensions and Winglets. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2016. [Google Scholar]
- Cole, J.; Maughmer, M.; Bramesfeld, G. Aerodynamic Design Considerations for Tiltrotor Wing Extensions and Winglets. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar] [CrossRef]
- Kambampati, S.; Smith, E.C. Aeroelastic optimization of high-speed tiltrotor wings with wing extensions and winglets. J. Aircr. 2017, 54, 1718–1727. [Google Scholar] [CrossRef]
- Magee, J.P.; Alexander, H.R. Wind Tunnel Tests of a Full Scale Hingeless Prop-Rotor Designed for the Boeing Model 222 Tilt Rotor Aircraft; NASA Technical Report, NASA-CR-114664; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Nasu, K.I. Tilt-Rotor Flutter Control in Cruise Flight; NASA Technical Report, NASA-TM-88315; NASA: Washington, DC, USA, 1986. [Google Scholar]
- Gourinat, Y.; Mueller, J.P.; Ferrer, R.; Krysinski, T.; Kerdreus, B. A numerical study on active control for tiltrotor whirl flutter stability augmentation. J. Am. Helicopter Soc. 2006, 51, 244–254. [Google Scholar] [CrossRef]
- Floros, M.W.; Kang, H. Tiltrotor whirl flutter stability augmentation using active wing tips. In Proceedings of the AHS International 73rd Annual Forum & Technology Display, Fort Worth, TX, USA, 9–11 May 2017. [Google Scholar]
- Paik, J.; Singh, R.; Gandhi, F.; Hathaway, E. Active tiltrotor whirl-flutter stability augmentation using wing-flaperon and swash-plate actuation. J. Aircr. 2007, 44, 1439–1446. [Google Scholar] [CrossRef]
- Kreshock, A.R.; Kang, H.; Yeo, H.; Acree, C.W. Development of a new aeroelastic tiltrotor wind tunnel testbed. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Kreshock, A.R.; Thornburgh, R.P.; Wilbur, M.L. Overview of the tiltrotor aeroelastic stability testbed. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Ivanco, T.G.; Kang, H.; Kreshock, A.R.; Thornburgh, R.P.; Newman, B. Generalized predictive control for active stability augmentation and vibration reduction on an aeroelastic tiltrotor model. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Venkataraman, S.; Inderjit, C. Validation of a comprehensive aeroelastic analysis for tiltrotor aircraft. J. Am. Helicopter Soc. 1998, 43, 333–341. [Google Scholar] [CrossRef]
- Dong, L.H. Research on Aeroelastic Dynamics of Tiltrotor-Wing Coupled System. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2012. [Google Scholar]
- Ma, H.W. Analysis and Test Design of Whirl Flutter of Tiltrotor. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2012. [Google Scholar]
- Hou, P. Research on Dynamics of Soft-Inplane Tiltrotor Model. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Yu, S.J. The Aeroelastic Stability Analysis of Tilt-Rotor Considering the Stiffness Characteristics of Tilting Hinge. Master’s Thesis, Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter; NASA Technical Report, NACA-TR-496; NASA: Washington, DC, USA, 1949. [Google Scholar]
- Theodorsen, T.; Garrick, I.E. Nonstationary Flow about a Wing-Aileron-Tab Combination including Aerodynamic Balance; NASA Technical Report, NACA-TR-736; NASA: Washington, DC, USA, 1942. [Google Scholar]
- Johnson, W. Dynamics of Tilting Proprotor Aircraft in Cruise Flight; NASA Technical Note, NASA TN D-7677; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Dong, L.H.; Zhou, J.L.; Yang, W.D. Experimental research on whirl flutter of tiltrotor aircraft. In Proceedings of the 44th European Rotorcfaft Forum, Delft, The Netherlands, 19–20 September 2018. [Google Scholar]
Parameters | Value |
---|---|
Number of blades | 3 |
Rotor radius | 3.81 m |
Rotor solidity | 0.089 |
Rotor blade pitch/flap coupling | −0.268 |
Lift curve slope | 5.7 |
Rotor rotational speed in hover | 565 r/min |
Rotor rotational speed in cruise | 458 r/min |
Blade flap inertia | 142 kg/m2 |
Wing length (semi-span) | 1.333 R |
Wing chord length | 0.413 R |
Rotor mast height | 0.261 R |
Pylon center of gravity location | 0.05 R |
Pylon mass | 655 kg |
Pylon pitch moment of inertia | 257 kg/m2 |
Pylon yaw moment of inertia | 231 kg/m2 |
Wing sweep angle | −6.5° |
Parameters | Value |
---|---|
Number of blades | 3 |
Rotor blade chord length | 31 mm |
Rotor rotational speed in cruise | 1200–1800 r/min |
Wing length (semi-span) | 690 mm |
Wing chord length | 240 mm |
Airfoil of wing | NACA0024 |
Number of wing sections | 7 |
Span length of wing section | 80 mm |
Wing dihedral angle | 0° |
Wing sweep angle | 0° |
Wing preinstall angle | 0° |
Rotor mast height | 150 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Li, Q. Whirl Flutter Suppression of Tiltrotor Aircraft Using Actively Controlled Aileron. Aerospace 2022, 9, 795. https://doi.org/10.3390/aerospace9120795
Dong L, Li Q. Whirl Flutter Suppression of Tiltrotor Aircraft Using Actively Controlled Aileron. Aerospace. 2022; 9(12):795. https://doi.org/10.3390/aerospace9120795
Chicago/Turabian StyleDong, Linghua, and Qiyu Li. 2022. "Whirl Flutter Suppression of Tiltrotor Aircraft Using Actively Controlled Aileron" Aerospace 9, no. 12: 795. https://doi.org/10.3390/aerospace9120795
APA StyleDong, L., & Li, Q. (2022). Whirl Flutter Suppression of Tiltrotor Aircraft Using Actively Controlled Aileron. Aerospace, 9(12), 795. https://doi.org/10.3390/aerospace9120795