Terminal Impact Angle Control Guidance Law Considering Target Observability
Abstract
:1. Introduction
2. Missile–Target Relative Kinematics
3. Target Observability and Error Dynamics
4. Guidance Law Design
5. Numerical Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Siouris, G.M. Missile Guidance and Control Systems; Springer: New York, NY, USA, 2004; pp. 194–205. [Google Scholar]
- Li, B.; Lin, D.; Wang, J. Guidance law to control impact angle and time based on optimality of error dynamics. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 3577–3588. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Y.; Liu, L. Terminal sliding mode control based impact time and angle constrained guidance. Aerosp. Sci. Technol. 2019, 93, 105142. [Google Scholar] [CrossRef]
- Zarchan, P. Tactical and Strategic Missile Guidance; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2012; pp. 569–576. [Google Scholar]
- Kim, B.S.; Lee, J.G.; Han, H.S. Biased PNG law for impact with angular constraint. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 277–288. [Google Scholar]
- Erer, K.S.; Merttopçuoglu, O. Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation. J. Guid. Control Dyn. 2012, 35, 700–704. [Google Scholar] [CrossRef]
- Kim, H.-G.; Lee, J.-Y. Generalized Guidance Formulation for Impact Angle Interception with Physical Constraints. Aerospace 2021, 8, 307. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, W.; Yang, L. Optimal Guidance Law with Impact-Angle Constraint and Acceleration Limit for Exo-Atmospheric Interception. Aerospace 2021, 8, 358. [Google Scholar] [CrossRef]
- Utkin, V.I. Sliding Modes in Control and Optimization; Springer: Berlin/Heidelberg, Germany, 1992; pp. 240–249. [Google Scholar]
- Zhang, Z.; Li, S.; Sheng, L. Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint. Aerosp. Sci. Technol. 2013, 31, 30–41. [Google Scholar] [CrossRef]
- Guo, J.; Xiong, Y.; Zhou, J. A New Sliding mode Control Design for Integrated Missile Guidance and Control System. Aerosp. Sci. Technol. 2018, 78, 54–61. [Google Scholar] [CrossRef]
- He, S.; Song, T.; Lin, D. Impact Angle Constrained Integrated Guidance and Control for Maneuvering Target Interception. J. Guid. Control Dyn. 2017, 40, 2653–2661. [Google Scholar] [CrossRef]
- Zhou, D.; Mu, C.; Xu, W. Adaptive Sliding-Mode Guidance of a Homing Missile. J. Guid. Control Dyn. 2015, 22, 589–594. [Google Scholar] [CrossRef]
- Kumar, S.R.; Ghose, D. Sliding mode control based terminal impact angle constrained guidance laws using dual sliding surfaces. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013. [Google Scholar]
- Lee, C.-H.; Tahk, M.-J.; Lee, J.-I. Design of impact angle control guidance laws via high-performance sliding mode control. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 235–253. [Google Scholar] [CrossRef]
- Lingren, A.G.; Gong, K.F. Position and Velocity Estimation Via Bearing Observations. IEEE Trans. Aerosp. Electron. Syst. 1978, 14, 564–577. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, Y.; Yu, Z. Observability Metrics for Single-Target Tracking With Bearings-Only Measurements. IEEE Trans. Syst. Man. Cybern. Syst. 2020, 99, 1–13. [Google Scholar] [CrossRef]
- Xu, S.; Dogancay, K. Optimal Sensor Placement for 3-D Angle-of-Arrival Target Localization. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1196–1211. [Google Scholar] [CrossRef]
- Grzymisch, J.; Fichter, W. Observability Criteria and Unobservable Maneuvers for In-Orbit Bearings-Only Navigation. J. Guid. Control Dyn. 2014, 37, 1250–1259. [Google Scholar] [CrossRef]
- Taek, L.S.; Tae, Y.U. Practical guidance for homing missiles with bearings-only measurements. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 434–443. [Google Scholar] [CrossRef]
- Lee, H.-I.; Shin, H.-S.; Tsourdos, A. Weaving Guidance for Missile Observability Enhancement. Ifac Papersonline 2017, 50, 15197–15202. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kim, T.-H.; Tahk, M.-J. Biased PNG for target observability enhancement against nonmaneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2–17. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; He, S. Optimal Guidance With Active Observability Enhancement for Scale Factor Error Estimation of Strapdown Seeker. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4347–4362. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, C.-H.; Tahk, M.-J. Time-to-go Polynomial Guidance with Trajectory Modulation for Observability Enhancement. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 55–73. [Google Scholar] [CrossRef]
- Hull, D.; Speyer, J.; Burris, D. Linear-quadratic guidance law for dual control of homing missiles. J. Guid. Control Dyn. 1990, 13, 137–144. [Google Scholar] [CrossRef]
- He, S.; Shin, H.S.; Ra, W.S. Observability-Enhancement Optimal Guidance Law. In Proceedings of the 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems, Cranfield, UK, 25–27 November 2019. [Google Scholar]
- Nardone, S.C.; Aidala, V.J. Observability Criteria for Bearings-Only Target Motion Analysis. IEEE Trans. Aerosp. Electron. Syst. 1981, 17, 162–166. [Google Scholar] [CrossRef]
- Lee, H.-I.; Tahk, M.-J.; Sun, B.-C. Practical Dual-Control Guidance Using Adaptive Intermittent Maneuver Strategy. J. Guid. Control Dyn. 2001, 24, 1009–1015. [Google Scholar] [CrossRef]
- Seo, M.-G.; Tahk, M.-J. Observability analysis and enhancement of radome aberration estimation with line-of-sight angle-only measurement. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 3322–3331. [Google Scholar]
- Ryoo, C.-K.; Cho, H.; Tahk, M.-J. Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans. Control Syst. Technol. 2006, 14, 483–492. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Initial coordinates of the missile | (143.3 m, 4596.3 m) |
Coordinates of the target | (4000 m, 0 m) |
Missile velocity | 300 m/s |
Missile initial velocity angle | −30 |
Maximum available overload | 10 |
Guidance Law | Average | Variance |
---|---|---|
TSG | 174.256 m | 189.215 m |
PFWOG | 163.194 m | 178.531 m |
Proposed | 1.544 m | 12.467 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Tang, P.; Xu, H.; Zheng, D. Terminal Impact Angle Control Guidance Law Considering Target Observability. Aerospace 2022, 9, 193. https://doi.org/10.3390/aerospace9040193
Li B, Tang P, Xu H, Zheng D. Terminal Impact Angle Control Guidance Law Considering Target Observability. Aerospace. 2022; 9(4):193. https://doi.org/10.3390/aerospace9040193
Chicago/Turabian StyleLi, Bin, Pan Tang, Haotian Xu, and Duo Zheng. 2022. "Terminal Impact Angle Control Guidance Law Considering Target Observability" Aerospace 9, no. 4: 193. https://doi.org/10.3390/aerospace9040193
APA StyleLi, B., Tang, P., Xu, H., & Zheng, D. (2022). Terminal Impact Angle Control Guidance Law Considering Target Observability. Aerospace, 9(4), 193. https://doi.org/10.3390/aerospace9040193