Propagation Characteristics of Modulated EHF Signal in the Wake Region of Plasma Sheath
Abstract
:1. Introduction
2. Characteristics of EHF Wave in Plasma Sheath
2.1. Analysis Method
2.2. Spatiotemporal Evolution Characteristics of EHF Wave in the Wake Region of Plasma Sheath
3. Numerical Simulations on the BER
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EHF | Extremely High Frequency |
BER | Bit Error Rate |
RAM C-I | Radio Attenuation Measurements C-I |
RAM C-II | Radio Attenuation Measurements C-II |
TDRS | NASA’s Tracking and Data Relay Satellite |
References
- Schouler, M.; Prévereaud, Y.; Mieussens, L. Survey of flight and numerical data of hypersonic rarefied flows encountered in earth orbit and atmospheric reentry. Prog. Aerosp. Sci. 2020, 118, 100638. [Google Scholar] [CrossRef]
- Starkey, R.P. Hypersonic Vehicle Telemetry Blackout Analysis. J. Spacecr. Rocket. 2015, 52, 426–438. [Google Scholar] [CrossRef]
- Gillman, E.D.; Foster, J.E.; Blankson, I.M. Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection via Cathode Spot Arcs for Blackout Mitigation; NASA/TM-2010-216220; NASA: Washington, DC, USA, 2010.
- Savino, R.; D’elia, M.E.; Carandente, V. Plasma Effect on Radiofrequency Communications for Lifting Reentry Vehicles. J. Spacecr. Rocket. 2015, 52, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Hartunian, R.; Stewart, G.; Fergason, S.; Curtiss, T.; Seibold, R. Causes and Mitigation of Radio Frequency (RF) Blackout During Reentry of Reusable Launch Vehicles; Technical Report; Aerospace Corporation: Segundo, CA, USA, 2007. [Google Scholar]
- Belov, I.F.; Borovoy, V.Y.; Gorelov, V.A.; Kireev, A.Y.; Korolev, A.S.; Stepanov, E.A. Investigation of Remote Antenna Assembly for Radio Communication with Reentry Vehicle. J. Spacecr. Rocket. 2001, 38, 249–256. [Google Scholar] [CrossRef]
- Song, L.; Li, X.; Bai, B.; Liu, Y. Effects of Plasma Sheath on the Signal Detection of Narrowband Receiver. IEEE Trans. Plasma Sci. 2018, 47, 251–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, X. Total-Field/Scattered-Field Formulation for FDTD Analysis of Plane-Wave Propagation through Cold Magnetized Plasma Sheath. IEEE Trans. Antennas Propag. 2019, 68, 377–387. [Google Scholar] [CrossRef]
- Cianca, E.; Rossi, T.; Yahalom, A.; Pinhasi, Y.; Farserotu, J.; Sacchi, C. EHF for Satellite Communications: The New Broadband Frontier. Proc. IEEE 2011, 99, 1858–1881. [Google Scholar] [CrossRef]
- Viti, L.; Hu, J.; Coquillat, D.; Politano, A.; Knap, W.; Vitiello, M.S. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci. Rep. 2016, 6, 20474. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yuan, K.; Shen, L.; Deng, X.; Hong, L.; Yao, M. Studies of terahertz wave propagation in realistic reentry plasma sheath. Prog. Electromagn. Res. 2016, 157, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Zhao, Q.; Liu, S.; Ma, P.; Huang, C.; Tang, Y.; Chen, X.; Xing, X.; Zhang, C.; Luo, X. Theoretical and experimental studies of 35 GHz and 96 GHz electromagnetic wave propagation in plasma. Prog. Electromagn. Res. 2012, 24, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; Chen, J.; Shen, L.; Deng, X.; Yao, M.; Hong, L. Impact of Reentry Speed on the Transmission of Obliquely Incident THz Waves in Realistic Plasma Sheaths. IEEE Trans. Plasma Sci. 2018, 46, 373–378. [Google Scholar] [CrossRef]
- Guo, L.; Guo, L.; Li, J. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency. Phys. Plasmas 2017, 24, 022108. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhu, Z.; Cui, W. The effect of ions on terahertz wave propagation characteristics in plasma sheath. In Proceedings of the 2014 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 October 2014; pp. 2398–2402. [Google Scholar]
- Yuan, C.-X.; Zhou, Z.-X.; Xiang, X.-L. Properties of Terahertz Waves Propagation in a Bounded Plasma Slab with High Collision Frequency and High Density. In Proceedings of the 2010 International Conference on Optoelectronics and Image Processing, Haikou, China, 11–12 November 2010; Volume 2, pp. 135–140. [Google Scholar]
- Zheng, L.; Zhao, Q.; Liu, S.; Xing, X.; Chen, Y. Theoretical and experimental studies of terahertz wave propagation in unmagnetized plasma. J. Infrared Millim. Terahertz Waves 2014, 35, 187–197. [Google Scholar] [CrossRef]
- Yuan, C.-X.; Zhou, Z.-X.; Zhang, J.W.; Xiang, X.-L.; Yue, F.; Sun, H.-G. FDTD Analysis of Terahertz Wave Propagation in a High-Temperature Unmagnetized Plasma Slab. IEEE Trans. Plasma Sci. 2011, 39, 1577–1584. [Google Scholar] [CrossRef]
- Tang, R.; Xiong, Z.; Yuan, K.; Mao, M.; Wang, Y.; Deng, X. EHF Wave Propagation in the Plasma Sheath Enveloping Sharp-Coned Hypersonic Vehicle. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 978–982. [Google Scholar] [CrossRef]
- He, G.; Zhan, Y.; Ge, N.; Pei, Y.; Wu, B. Measuring the Time-Varying Channel Characteristics of the Plasma Sheath from the Reflected Signal. IEEE Trans. Plasma Sci. 2014, 42, 3975–3981. [Google Scholar] [CrossRef]
- Zhang, J.; He, G.; Bai, P.; Ge, N. Dynamic channel modeling for communication through turbulent plasma sheath. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Frankel, D.S.; Nebolsine, P.E.; Miller, M.G.; Glynn, J.M. Re-entry plasma induced pseudorange and attenuation effects in a GPS simulator. Def. Secur. 2004, 5420, 65–74. [Google Scholar] [CrossRef]
- Ohler, S.G.; Gilchrist, B.E.; Gallimore, A.D. Electromagnetic signal modification in a localized high-speed plasma flow: Simulations and experimental validation of a stationary plasma thruster. IEEE Trans. Plasma Sci. 1999, 27, 587–594. [Google Scholar] [CrossRef]
- Ouyang, W.; Jin, T.; Wu, Z.; Deng, W. Study of Terahertz Wave Propagation in Realistic Plasma Sheath for the Whole Reentry Process. IEEE Trans. Plasma Sci. 2021, 49, 460–465. [Google Scholar] [CrossRef]
- Van der Vleuten, E.; Lagendijk, V. Transnational infrastructure vulnerability: The historical shaping of the 2006 European 221 “Blackout”. Energy Policy 2010, 38, 2042–2052. [Google Scholar] [CrossRef] [Green Version]
- Savajano, R.; Potter, D.F.; Joshi, O.; Leyland, P. Radiation Analysis for Two Trajectory Points of the Fire II Entry. Int. J. Aerosp. Eng. 2012, 1–9. [Google Scholar] [CrossRef]
- Lin, T.; Sproul, L. Influence of reentry turbulent plasma fluctuation on EM wave propagation. Comput. Fluids 2006, 35, 703–711. [Google Scholar] [CrossRef]
- Clarey, M.P.; Greendyke, R.B. Three-Temperature Thermochemical Nonequilibrium Model with Application to Slender-Body Wakes. J. Thermophys. Heat Transf. 2019, 33, 721–737. [Google Scholar] [CrossRef]
- Yamagishi, M.; Yahagi, Y.; Ota, M.; Hirose, Y.; Udagawa, S.; Inage, T.; Kubota, S.; Fujita, K.; Ohtani, K.; Nagai, H. Quantitative density measurement of wake region behind reentry capsule (Improvements in accuracy of 3D reconstruction by evaluating the view-angle of measurement system). J. Fluid Sci. Technol. 2021, 16, JFST0021. [Google Scholar] [CrossRef]
- Jung, M.; Kihara, H.; Abe, K.I.; Takahashi, Y. Numerical simulation of plasma flows and radio-frequency blackout in atmospheric reentry demonstrator mission. In Proceedings of the 47th AIAA Fluid Dynamics Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Kim, M.; Keidar, M.; Boyd, I. Two-dimensional Model of an Electromagnetic Layer for the Mitigation of Communications Blackout. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Takahashi, Y.; Nakasato, R.; Oshima, N. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions. Aerospace 2016, 3, 2. [Google Scholar] [CrossRef]
- Paulat, J.; Boukhobza, P. Re-Entry Flight Experiments Lessons Learned—The Atmospheric Reentry Demonstrator ARD; Flight Experiments for Hypersonic Vehicle Development, NATO Research and Technology Organization RTO-EN-AVT-130; RTO: Neuillysur-Seine, France, 2007; pp. 1–46. [Google Scholar]
- Fan, J.; Zhang, Y.; Jiang, J. Monte Carlo modeling of electron density in hypersonic rarefied gas flows. AIP Conf. Proc. 2014, 1628, 148–154. [Google Scholar] [CrossRef]
- Hu, B.J.; Wei, G.; Lai, S.L. SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab. IEEE Trans. Plasma Sci. 1999, 27, 1131–1136. [Google Scholar] [CrossRef]
- Li, Y.; Luo, B.; Guo, W. Feasibility Analysis of Using Ka-Band of TRDS to support Wireless Communication for spacecraft Reentry. Manned Spacefl. 2015, 21, 582–588. [Google Scholar]
- Wang, J.; Jing, Y.; Yang, X. On Approaches to Overcome Spacecraft Reentry Communication Blackout Using Satellite Relay. Spacecr. Eng. 2015, 24, 1–8. [Google Scholar]
- Wen, Z.; Chen, C.; Ling, Y.; Zhou, T. A Research on Communications Blackout Problem in Ka-Band by Relay Method. J. Air Force Eng. Univ. Nat. Sci. Ed. 2016, 17, 18–22. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yuan, K.; Wang, Y.; Liu, Y.; Xiong, J. Propagation Characteristics of Modulated EHF Signal in the Wake Region of Plasma Sheath. Aerospace 2022, 9, 194. https://doi.org/10.3390/aerospace9040194
Yang X, Yuan K, Wang Y, Liu Y, Xiong J. Propagation Characteristics of Modulated EHF Signal in the Wake Region of Plasma Sheath. Aerospace. 2022; 9(4):194. https://doi.org/10.3390/aerospace9040194
Chicago/Turabian StyleYang, Xiaocui, Kai Yuan, Yuhao Wang, Yiwen Liu, and Jiawei Xiong. 2022. "Propagation Characteristics of Modulated EHF Signal in the Wake Region of Plasma Sheath" Aerospace 9, no. 4: 194. https://doi.org/10.3390/aerospace9040194
APA StyleYang, X., Yuan, K., Wang, Y., Liu, Y., & Xiong, J. (2022). Propagation Characteristics of Modulated EHF Signal in the Wake Region of Plasma Sheath. Aerospace, 9(4), 194. https://doi.org/10.3390/aerospace9040194