System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft
Abstract
:1. Introduction
Scope of This Article
2. Technical Approach for System Noise Prediction of Supersonic Aircraft
2.1. Standard for LTO Noise
2.2. NASA 55t Supersonic Technology Concept Aeroplane
2.3. LTO Noise Prediction Tools and Input Data
Component | JAXA AiNEST [14] | NASA ANOPP [11] |
---|---|---|
Jet noise | Modified SAE method | SAE method [20] |
Fan noise | GE-Heidmann method [24] | GE-Heidmann method [24] |
Treatment | Modified GE method [22] | Modified GE method [22] |
Core noise | Emmerling method [25] | Emmerling method [25] |
Airframe noise | Fink method [20] | Modified Fink method |
Atmospheric absorption | ISO 9613-1:1993 [26] (ISA + 10 °C, 70%RH) | SAE ARP866 [27] (ISA + 10 °C, 70%RH) |
Ground reflection | Chien-Soroka method [28] (Grass-covered ground) | Chien-Soroka method [28] (Grass-covered ground) |
Lateral attenuation | SAE AIR 5662 [29] (Fuselage-mounted engines) | SAE AIR5662 [29] (Fuselage-mounted engines) |
Shielding effect | Ray-tracing + Maekawa method [21] | Maekawa diffraction method [30] |
3. Component-Based Validation
3.1. Scale Model Tests for a Single Heat-Simulated Jet
3.2. Ground Noise Measurement Tests Using JAXA’s Experimental Aircraft
3.3. Fan Noise Shielding Effect
3.4. Uncertainty Analysis of the System Noise Assessment
4. Results and Discussions
4.1. Results of System Noise Assessment of NASA 55t STCA
4.2. Sensitivity Analysis and Discussion
5. Summary and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Civil Aviation Organization. Chaps. 3, 4, 12 and 14. In Annex 16 Environmental Protection Volume I Aircraft Noise, 7th ed.; International Civil Aviation Organization: Montreal, QC, Canada, 2014. [Google Scholar]
- Piccirillo, G.; Viola, N.; Fusaro, R.; Federico, L. Guidelines for the LTO Noise Assessment of Future Civil Supersonic Aircraft in Conceptual Design. Aerospace 2022, 9, 27. [Google Scholar] [CrossRef]
- Stone, J.R.; Krejsa, E.A.; Halliwell, l.; Clark, B.J. Noise Suppression Nozzles for a Supersonic Business Jet. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24–28 July 2000. AIAA 2000-3194. [Google Scholar]
- Rask, O.; Kastner, J.; Gutmark, E.J. Understanding How Chevrons Modify Noise in a Supersonic Jet with Flight Effects. AIAA J. 2011, 49, 8. [Google Scholar] [CrossRef]
- Semlitsch, B.; Cuppoletti, D.R.; Gutmark, E.J.; Mihăescu, M. Transforming the Shock Pattern of Supersonic Jets Using Fluidic Injection. AIAA J. 2019, 57, 5. [Google Scholar] [CrossRef] [Green Version]
- Scupski, N.; Akatsuka, J.; McLaughlin, D.K.; Morris, P.J. Experiments with Rectangular Supersonic Jets with Potential Noise Reduction Technology. J. Acoust. Soc. Am. 2022, 151, 56–66. [Google Scholar] [CrossRef]
- Berton, J.J.; Haller, W.J.; Senick, P.F.; Jones, S.M.; Seidel, J.A. A Comparative Propulsion System Analysis for the High-Speed Civil Transport; NASA/TM-2005-213414; NASA: Washington, DC, USA, 2005.
- Huff, D.L.; Henderson, B.S.; Berton Jeff, J.; Seidel, J.A. Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. AIAA 2016-1635. [Google Scholar]
- Henderson, B.; Huff, D.L. The Aeroacoustics of Offset Three-Stream Jets for Future Commercial Supersonic Aircraft. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016. AIAA 2016-2992. [Google Scholar]
- Berton, J.J.; Jones, S.M.; Seidel, J.A.; Huff, D.L. Advanced Noise Abatement Procedures for a Supersonic Business Jet. In Proceedings of the 23rd International Symposium on Air Breathing Engines (ISABE): Economy, Efficiency and Environment, Manchester UK, 3–8 September 2017. ISABE-2017-22538. [Google Scholar]
- Berton, J.J.; Huff, D.L.; Geiselhart, K.; Seidel, J. Supersonic Technology Concept Aeroplanes for Environmental Studies. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. AIAA2020-0263. [Google Scholar]
- Yoshida, K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA. Prog. Aerosp. Sci. 2009, 45, 124–146. [Google Scholar] [CrossRef]
- Akatsuka, J.; Ishii, T. Experimental and Numerical Study of Jet Noise Reduction for Supersonic Aircraft Using Variable Folding Nozzle Concept. In Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25–29 June 2018. AIAA 2018-3612. [Google Scholar]
- Akatsuka, J. Development of Aircraft Noise Estimation Tool; JAXA RR 2016-0005; JAXA: Tokyo, Japan, 2017. (In Japanese)
- Akatsuka, J.; Ishii, T. System Noise Assessment of NASA Supersonic Technology Concept Aeroplane Using JAXA’s Noise Prediction Tool. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. AIAA202-0265. [Google Scholar]
- Nöding, M.; Schuermann, M.; Bertsch, L.; Koch, M.; Plohr, M.; Jaron, R.; Berton, J.J. Simulation of Landing and Take-Off Noise for Supersonic Transport Aircraft at a Conceptual Design Fidelity Level. Aerospace 2022, 9, 9. [Google Scholar] [CrossRef]
- Zorumski, W.E. Aircraft Noise Prediction Program Theoretical Manual, Parts 1 and 2; NASA TM-83199; NASA: Washington, DC, USA, 1982.
- ARP 876E; Gas Turbine Jet Exhaust Noise Prediction. Society of Automotive Engineers (SAE): Warrendale, PA, USA, 2012.
- Viswanathan, K.; Czech, M.J. Measurement and Modeling of Effect of Forward Flight on Jet Noise. AIAA J. 2011, 49, 216–234. [Google Scholar] [CrossRef]
- Fink, M.R. Airframe Noise Prediction Method; FAA RD-77-29; FAA: Washington, DC, USA, 1977.
- Ogino, S.; Kanazaki, M.; Ito, Y.; Murayama, M.; Yamamoto, K. Noise Evaluation Based on Geometrical Acoustics Approach and Its Application to Fan Noise Shielding Effect of Nacelle Over Wide-Body Aircraft. In Proceedings of the 2018 JSASS North Branch Annual Meeting, Sendai, Miyagi, Japan, 3–5 March 2018. (In Japanese). [Google Scholar]
- Kontos, K.B.; Krafta, R.E.; Gliebe, P.R. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems Volume 2: Fan Suppression Model Development; Technical Report NASA CR 202309; NASA: Washington, DC, USA, 1997.
- Department of Transportation and Federal Aviation Administration. Noise Certification of Supersonic Airplanes. Technical Report. Federal Register, Notice of Proposed Rulemaking (NPRM). 2021; Volume 85, No. 71; pp. 20431–20447. Available online: https://www.govinfo.gov/content/pkg/FR-2020-04-13/pdf/2020-07039.pdf (accessed on 21 February 2022).
- Kontos, K.; Janardan, B.; Gliebe, P. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems; Technical Report NASA-CR-195480; NASA: Washington, DC, USA, 1996.
- Emmerling, J.J.; Kazin, S.B.; Matta, R.K. Core Engine Noise Control Program. Vol. III, Supplement 1-Prediction Methods; FAA RD-74-125, III-I; FAA: Washington, DC, USA, 1976.
- International Organization for Standardization (ISO). Acoustics—Attenuation of Sound during Propagation Outdoors. Part 1: Calculation of the Absorption of Sound by the Atmosphere; Technical Report ISO 9613-1:1993; ISO: Geneva, Switzerland, 1993. [Google Scholar]
- ARP 866B; Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity. Society of Automotive Engineers (SAE): Warrendale, PA, USA, 2012.
- Chien, C.F.; Soroka, W.W. Sound Propagation Along an Impedance Plane. J. Sound Vib. 1975, 43, 9–20. [Google Scholar] [CrossRef]
- Society of Automotive Engineers (SAE). Method for Predicting Lateral Attenuation of Airplane Noise; Aerospace Information Report, AIR5662; Society of Automotive Engineers (SAE): Warrendale, PA, USA, 1981. [Google Scholar]
- Maekawa, Z. Noise reduction by screens. Appl. Acoust. 1968, 1, 157–173. [Google Scholar] [CrossRef]
- Ishii, T.; Yamamoto, K.; Nagai, K.; Ishii, Y. Overview of Jet Noise Measurement at JAXA. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2014, 12, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Doty, M.J.; McLaughlin, D.K. Acoustic and mean flow measurements of high-speed, helium-air mixture jets. Int. J. Aeroacoustics 2003, 2, 293–333. [Google Scholar] [CrossRef]
- Tanna, H.K.; Dean, P.D.; Burin, R.H. The Generation and Radiation of Supersonic Jet Noise: Vol. I11 Turbulent Mixing Noise Data; U.S.A.F. Aero Propulsion Lab; Technical Report AFAPLTR-76-65; Air Force Aero Propulsion Laboratory: Dayton, OH, USA, 1976. [Google Scholar]
- Stone, J.; Krejsa, E.; Clark, B.; Berton, J. Jet Noise Modeling for Suppressed and Unsuppressed Aircraft in Simulated Flight; Technical Report NASA/TM—2009-215524; NASA, Glenn Research Center: Cleveland, OH, USA, 2009.
- Viswanathan, K. Improved Method for Prediction of Noise from Single Jets. AIAA J. 2007, 5, 151–161. [Google Scholar] [CrossRef]
- Akatsuka, J.; Ishii, T. Comparative Study of Semi-empirical Jet Noise Prediction Models for Future Commercial Supersonic Aircraft. In Proceedings of the AIAA Aviation 2021 Forum, Virtual Event, 2–6 August 2021. AIAA2021-2219. [Google Scholar]
- Tomita, H.; Naruoka, M. JAXA Flying Test Bed “Hisho”. Aeronaut. Space Sci. Jpn. 2014, 62, 195–201. (In Japanese) [Google Scholar]
- Motoda, T.; Stengel, R.F.; Miyazawa, Y. Robust control system design using simulated annealing. J. Guid. Control. Dyn. 2002, 25, 267–274. [Google Scholar] [CrossRef]
M1.4, 50 kft, ISA | M0.25, Sea Level, ISA + 27 °F | Sea Level Static, ISA + 27 °F | |
---|---|---|---|
Net thrust, lb/engine | 3330 | 14,140 | 16,620 |
Specific fuel consumption, lb/hr/lb | 0.943 | 0.588 | 0.479 |
Bypass ratio | 2.9 | 2.9 | 3 |
Burner temperature, °R | 3300 | 3150 | 3130 |
Turbine inlet temperature, °R | 3180 | 3040 | 3020 |
Compressor exit temperature, °R | 1450 | 1440 | 1430 |
Overall pressure ratio | 22 | 21 | 21 |
Fan pressure ratio | 2 | 1.9 | 1.9 |
Compressor pressure ratio | 11.2 | 11.1 | 11.2 |
Extraction ratio | 1.1 | 1.1 | 1.1 |
Nozzle pressure ratio | 5.9 | 1.9 | 1.8 |
No. | Item | Mode | Model | Min | Max | Std.dev. | Offset |
---|---|---|---|---|---|---|---|
1 | Approach indicated airspeed, kt | Benchmark case | Triangular | −10 | +10 | - | - |
2 | Lateral indicated airspeed, kt | Benchmark case | Triangular | −10 | +10 | - | - |
3 | Flyover indicated airspeed, kt | Benchmark case | Triangular | −10 | +10 | - | - |
4 | Approach angle of attack, ° | Benchmark case | Triangular | −1 | +1 | - | - |
5 | Lateral angle of attack, ° | Benchmark case | Triangular | −1 | +1 | - | - |
6 | Flyover angle of attack, ° | Benchmark case | Triangular | −1 | +1 | - | - |
7 | Flyover altitude, ft | Benchmark case | Triangular | −140 | +140 | - | - |
8 | Fan inlet noise adjustment (lateral), dB | - | Normal | - | - | 1 | 1 |
9 | Fan inlet noise adjustment (flyover), dB | - | Normal | - | - | 1 | 1 |
10 | Fan inlet noise adjustment (approach), dB | - | Normal | - | - | 4 | −4 |
11 | Fan exit noise adjustment (lateral), dB | - | Normal | - | - | 2 | −2 |
12 | Fan exit noise adjustment (flyover), dB | - | Normal | - | - | 3 | −3 |
13 | Fan exit noise adjustment (approach), dB | - | Normal | - | - | 3 | −3 |
14 | Core noise adjustment (lateral), dB | - | Normal | - | - | 3 | 0 |
15 | Core noise adjustment (flyover), dB | - | Normal | - | - | 1 | 0 |
16 | Core noise adjustment (approach), dB | - | Normal | - | - | 1 | 0 |
17 | Gear noise adjustment, dB | - | Normal | - | - | 5 | 0 |
18 | Flap noise adjustment, dB | - | Normal | - | - | 5 | 0 |
19 | Airframe trailing edge noise adjustment, dB | - | Normal | - | - | 5 | 0 |
20 | Inlet treatment effectiveness, dB | 0 | Triangular | −2 | +2 | - | - |
21 | Exhaust treatment effectiveness, dB | 0 | Triangular | −2 | +2 | - | - |
22 | Ground specific flow resistance, sl/s-ft3 | 291 | Triangular | 262 | 320 | - | - |
23 | Shielding effect, dB | - | Normal | - | - | 2.6 | 5 |
24 | Jet noise adjustment (20°–90°), dB | - | Normal | - | - | 1.1 | 0.1 |
25 | Jet noise adjustment (100°), dB | - | Normal | - | - | 1.0 | 0.2 |
26 | Jet noise adjustment (110°), dB | - | Normal | - | - | 1.3 | 0.8 |
27 | Jet noise adjustment (120°), dB | - | Normal | - | - | 1.1 | 0.6 |
28 | Jet noise adjustment (130°), dB | - | Normal | - | - | 1.2 | 1.3 |
29 | Jet noise adjustment (140°), dB | - | Normal | - | - | 1.7 | 1.9 |
30 | Jet noise adjustment (150°), dB | - | Normal | - | - | 1.6 | 1.4 |
31 | Jet noise adjustment (160°), dB | - | Normal | - | - | 2.1 | 1.5 |
Source of Data | NASA Ref. [11] | Present Study | ||||||
---|---|---|---|---|---|---|---|---|
Statistic in EPNL | Approach | Lateral | Flyover | Cumulative | Approach | Lateral | Flyover | Cumulative |
Benchmark case | 96.4 | 93.0 | 87.0 | 276.4 | 97.5 | 93.0 | 86.1 | 276.6 |
Min. of samples | 91.6 | 90.3 | 83.9 | 270.2 | 91.5 | 86.7 | 83.2 | 268.6 |
Max. of samples | 102.6 | 97.5 | 92.9 | 286.8 | 103.7 | 96.1 | 97.1 | 286.1 |
Range of samples | 11.0 | 7.2 | 9.0 | 16.6 | 12.2 | 9.4 | 13.9 | 17.6 |
Mean of samples | 95.4 | 94.0 | 88.1 | 277.5 | 96.4 | 93.8 | 86.0 | 276.1 |
Standard deviation | 1.33 | 0.96 | 1.32 | 2.27 | 1.58 | 0.56 | 1.11 | 2.13 |
LTO Noise Standard for Subsonic Aircraft | Approach | Lateral | Flyover | Cumulative | ||||
Noise limits in EPNL (Chapter4) | 99.5 | 95.7 | 92.8 | 278.0 | ||||
Noise limits in EPNL (Chapter14) | 98.5 | 94.7 | 91.8 | 271.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akatsuka, J.; Ishii, T. System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft. Aerospace 2022, 9, 212. https://doi.org/10.3390/aerospace9040212
Akatsuka J, Ishii T. System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft. Aerospace. 2022; 9(4):212. https://doi.org/10.3390/aerospace9040212
Chicago/Turabian StyleAkatsuka, Junichi, and Tatsuya Ishii. 2022. "System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft" Aerospace 9, no. 4: 212. https://doi.org/10.3390/aerospace9040212
APA StyleAkatsuka, J., & Ishii, T. (2022). System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft. Aerospace, 9(4), 212. https://doi.org/10.3390/aerospace9040212