Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship
Abstract
:1. Introduction
2. Methodology
2.1. Material Model
2.2. Thermal Model
2.2.1. Earth Radiation
2.2.2. Atmospheric Radiation
2.2.3. Direct Solar Radiation
2.2.4. Sky Radiation
2.2.5. Reflected Radiation from the Earth and Clouds
2.3. Analysis Process and Method
3. Coupling Model Condition
3.1. Boundary Condition
3.2. Buoyancy Condition
3.3. Aerodynamic Load Condition
4. Results and Discussions
4.1. Simulation Results
4.1.1. Simulation Results at 6:00 a.m.
4.1.2. Simulation Results at 12:00 p.m.
4.1.3. Simulation Results at 6:00 p.m.
4.1.4. Simulation Results at 12:00 a.m.
4.2. Volume Change of Airship Envelope under Fluid–Solid–Thermal Coupling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, J.; Duan, D.; Xie, W. Shape Exploration and Multidisciplinary Optimization Method of Semirigid Nearing Space Air-ships. J. Aircr. 2021, 59, 946–963. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Duan, D.; Xie, W. Optimisation And Analysis Of Efficiency For Contra-Rotating Propellers for High-Altitude Airships. Aeronaut. J. 2019, 123, 706–726. [Google Scholar] [CrossRef]
- Stefan, K. Thermal effects on a high altitude airship. In Proceedings of the American Institute of Aeronautics and Astronautics 5th Lighter Than Air Conference, Anaheim, CA, USA, 25–27 July 1983. [Google Scholar]
- Cathey, H.M., Jr. Advances in the Thermal Analysis of Scientific Balloons; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Garde, G. Thermal Modeling of NASA’s Super Pressure Pumpkin Balloon. In Proceedings of the AIAA Balloon Systems Conference, Williamsburg, VA, USA, 8 May 2013. [Google Scholar]
- Fang, X.D.; Wang, W.Z.; Li, X.J. A Study of Thermal Simulation of Near-space airships. Spacecr. Recovery Remote Sens. 2007, 28, 5–9. [Google Scholar]
- Xu, X.H.; Cheng, X.T.; Liang, X.G. Thermal analysis of a near-space airship. J. Tsinghua Univ. (Sci. Technol.) 2009, 49, 1848–1851. [Google Scholar]
- Liu, D.; Yang, Y.; Lü, M.; Wu, Z. Effect of envelope thermal radiative properties on the stratospheric super-pressure LTA vehicle helium temperature. J. Beijing Univ. Aeronaut. Astronaut. 2010, 36, 83–87. [Google Scholar]
- Xia, X.L.; Li, D.F.; Sun, C.; Ruan, L.M. Transient Thermal Behavior of Stratospheric Balloons at Float Conditions. Adv. Space Res. 2010, 46, 1184–1190. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yang, C.X. A Comprehensive Numerical Model Examining the Thermal Performance of Airships. Adv. Space Res. 2011, 48, 1515–1522. [Google Scholar] [CrossRef]
- Dai, Q.M. Research on the Thermal Environment and Thermal Characteristics for Aerostats; Nanjing University of Aeronautics and Astronautics: Nan Jing, China, 2014. [Google Scholar]
- Liu, T.T.; Ma, Z.Y.; Yang, X.X.; Zhang, J.S. Influence of Solar Cells On Thermal Characteristics of Near-Space Airship. J. Astronaut. 2018, 39, 35–42. [Google Scholar]
- Harada, K.; Eguchi, K.; Sano, M.; Sasa, S. Experimental Study of Thermal Modeling for Stratospheric Platform Airship. In Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum, Denver, CO, USA, 17–19 November 2003. [Google Scholar]
- Cheng, X.T.; Xu, X.H.; Liang, X.G. Thermal Simulation and Experiment for an Airship under Low Altitude Environment. J. Astronaut. 2010, 31, 2417–2421. [Google Scholar]
- Bruce, R.; Reulet, P.; Millan, P.; Parot, G.; Letrenne, G. Experimental Study of Natural Convection on the Wall of Infrared Balloon. In Proceedings of the 10th AIAA/ASME Joint Thermo-physics and Heat Transfer Conference, Chicago, IL, USA, 28 June 2010. [Google Scholar]
- Li, D.F. Thermal Behavior and Its Dynamic Effects on Stratospheric Aerostats; Harbin Institute of Technology: Harbin, China, 2011. [Google Scholar]
- Carlson, L.A.; Horn, W.J. New Thermal and Trajectory Model for High-Altitude Balloons. AIAA Pap. 1981, 20, 500–507. [Google Scholar]
- Rodger, F. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons. In Proceedings of the AIAA 5th ATIO and 16th Lighter-Than-Air System Technology and Balloon Systems Conferences, Arlington, VA, USA, 26–28 September 2005. [Google Scholar]
- Yao, W.; Lu, X.; Wang, C.; Ma, R. A Heat Transient Model for the Thermal Behavior Prediction of Near-space airships. Appl. Therm. Eng. 2014, 70, 380–387. [Google Scholar] [CrossRef]
- Dai, Q.; Fang, X.; Li, X.; Tian, L. Performance Simulation of High Altitude Scientific Balloons. Adv. Space Res. 2012, 49, 1045–1052. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, X.; Ma, R.; Li, Y. A Simplified Thermal Model and Comparison Analysis for a Stratospheric Lighter-Than-Air Vehicle. J. Heat Transf. Tranenvel. ASME 2018, 140, 022801. [Google Scholar] [CrossRef]
- Cheng, C. Transient Thermal Model and Thermal Characteristics Analysis of Near-Space Airships; Shanghai Jiao Tong University: Shanghai, China, 2019. [Google Scholar]
- Wang, X.L.; Xie, W.C. Thermal Characteristics Analysis of Near-space airships Envelope. Equip. Environ. Eng. 2020, 17, 13–19. [Google Scholar]
- Wang, X.L.; Shan, X.X.; Chen, L. Study on Fluid-Structure Coupled Computational Method for Stratosphere Airship. J. Astronaut. 2011, 32, 22–28. [Google Scholar]
- Bessert, N.; Frederich, O. Nonlinear Airship Aeroelasticity. J. Fluids Struct. 2005, 21, 731–742. [Google Scholar] [CrossRef]
- El Omari, K.; Schall, E.; Koobus, B.; Dervieux, A.; Amara, M.; Dumas, J.P. Fluid-Structure Coupling of a Turbulent Flow and a Generic Blimp Structure at High Angle of Attack. Ninth Int. Conf. Zaragoza Pau Appl. Math. Stat. 2006, 33, 369–376. [Google Scholar]
- Liu, J.M. Coupling Computation of the Flow Field and the Large Deformation of Membrane Structure of Stratosphere Airships; Shanghai Jiao Tong University: Shanghai, China, 2007. [Google Scholar]
- Dai, Q.M.; Fang, X.D. Thermal-fluid-Structure Coupling analysis on Near-space airships. In Proceedings of the 5th China High Resolution Earth Observation Conference, Xi’an, China, 18–20 June 2018. [Google Scholar]
- Jenkins, E.P. Principles of Solar Engineering. Sol. Energy 1979, 23, 183–184. [Google Scholar] [CrossRef]
- Nobile, R.; Vahdati, M. Dynamic Stall for a Vertical Axis Turbine in a Two-Dimensional Study. In Proceedings of the World Renewable Energy Congress, Lisbon, Portugal, 26–30 July 2011. [Google Scholar]
- Yang, Y.; Li, D.; Zhang, Z.H. Influences of Flapping Wing Micro Aerial Vehicle Unsteady Motion on Horizontal Tail. Acta Aeronaut. Astronaut. Sin. 2012, 33, 1827–1833. [Google Scholar]
- Shima, E.; Kitamura, K.; Haga, T. Green-Gauss/Weighted-Least-Squares Hybrid Gradient Reconstruction for Arbitrary Polyhedra Unstructured Grids. AIAA J. 2013, 51, 2740–2747. [Google Scholar] [CrossRef] [Green Version]
- Warming, R.F.; Beam, R.M. Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows. AIAA J. 1976, 14, 1241–1249. [Google Scholar] [CrossRef]
Temperature (°C) | −33 | 3 | 23 | 40 | 80 |
---|---|---|---|---|---|
3669.515 | 2296.417 | 1715.832 | 1373.241 | 1300.335 | |
−257.781 | −174.32 | −109.514 | −56.4565 | 13.3424 | |
−2.48195 | 0.485099 | −0.27352 | −0.72883 | −1.14517 | |
9.249948 | 6.827669 | 5.279409 | 3.7769 | −0.71296 | |
1.411409 | 0.650474 | 0.536042 | 0.449718 | −0.33591 | |
0.539084 | 0.091826 | 0.127741 | 0.117449 | −0.82441 | |
2869.423 | 1792.312 | 1429.07 | 1245.06 | 1237.787 | |
0.447077 | 0.529999 | −0.01938 | −0.51707 | 0.6388 | |
−114.703 | −79.9611 | −43.7049 | 15.6374 | −6.46238 | |
0.291252 | 0.269617 | 0.142972 | 0.02213 | −0.11448 | |
3.601823 | 1.915789 | 1.823383 | 1.783014 | 0.157013 | |
0.173065 | 0.227971 | 0.136431 | 0.0114 | −0.37252 | |
0.012636 | 0.2625335 | 0.40475 | 0.500943 | 0.5663782 | |
0.042854 | 0.037915 | 0.02569 | 0.015421 | 0.011972 | |
0.06888 | −0.01384 | −0.02771 | −0.03523 | −0.08995 | |
0.000383 | −0.00078 | −0.00098 | −0.00143 | −0.00554 | |
−0.00037 | 0.0013439 | 0.001955 | 0.002122 | 0.0006894 | |
−0.00774 | −0.002531 | −0.00193 | −0.00095 | 0.0097954 |
Local latitude | 41° | Local longitude | 92° |
Day of year | 174 | Altitude | 20,000 m |
Pitch angle of the airship | 0° | Yaw angle of the airship | 0° |
Roll angle | 0° | Inflow velocity | 10 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Xie, W.; Wang, X.; Chen, C. Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship. Aerospace 2022, 9, 439. https://doi.org/10.3390/aerospace9080439
Tang J, Xie W, Wang X, Chen C. Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship. Aerospace. 2022; 9(8):439. https://doi.org/10.3390/aerospace9080439
Chicago/Turabian StyleTang, Jiwei, Weicheng Xie, Xiaoliang Wang, and Cheng Chen. 2022. "Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship" Aerospace 9, no. 8: 439. https://doi.org/10.3390/aerospace9080439
APA StyleTang, J., Xie, W., Wang, X., & Chen, C. (2022). Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship. Aerospace, 9(8), 439. https://doi.org/10.3390/aerospace9080439