Management Considerations for Pulmonary Arterial Hypertension Pharmacotherapy in the Intensive Care Unit
Abstract
:1. Introduction
2. Management of Chronic PAH Therapies in the ICU
2.1. PDE-5 Inhibitors
2.2. Soluble Guanylate Cyclase Stimulators
2.3. Endothelin Receptor Antagonists
2.4. Prostacyclin Analogues and Selective IP Receptor Agonists
3. Escalation of Therapy
3.1. IV Prostacyclin Analogues
3.2. Inhaled Therapies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Muzevich, K.M.; Chohan, H.; Grinnan, D.C. Management of pulmonary vasodilator therapy in patients with pulmonary arterial hypertension during critical illness. Crit. Care Lond. Engl. 2014, 18, 523. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, R.; Kiely, D. Critical care management of pulmonary hypertension. BJA Educ. 2017, 17, 228–234. [Google Scholar] [CrossRef]
- Galiè, N.; Barberà, J.A.; Frost, A.E.; Ghofrani, H.A.; Hoeper, M.M.; McLaughlin, V.V.; Peacock, A.J.; Simonneau, G.; Vachiery, J.L.; Grünig, E.; et al. Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension. N. Engl. J. Med. 2015, 373, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Channick, R.N.; Frantz, R.P.; Grünig, E.; Jing, Z.C.; Moiseeva, O.; Preston, I.R.; Pulido, T.; Safdar, Z.; Tamura, Y.; et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur. Respir. J. 2019, 53, 1801889. [Google Scholar] [CrossRef] [PubMed]
- Tilea, I.; Varga, A.; Georgescu, A.M.; Grigorescu, B.L. Critical Care Management of Decompensated Right Heart Failure in Pulmonary Arterial Hypertension Patients—An Ongoing Approach. J. Crit. Care Med. 2021, 7, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Mathier, M.A. Pulmonary Hypertension in the Intensive Care Unit. J. Intensive Care Med. 2016, 31, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Bayer HealthCare Pharmaceuticals Inc. ADEMPAS- Riociguat Tablet, Film Coated. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7b57509a-3d5d-41d4-8fed-1471e26372a3 (accessed on 7 June 2023).
- Gilead Sciences, Inc. LETAIRIS- Ambrisentan Tablet, Film Coated. Package Insert. 2020. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=725d4e73-6c83-477a-adc6-0ae4a133a844 (accessed on 7 June 2023).
- Actelion Pharmaceuticals US, Inc. TRACLEER- Bosentan Tablet, Film Coated; TRACLEER- Bosentan Tablet, Soluble. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=749e42fb-2fe0-45dd-9268-b43bb3f4081c (accessed on 7 June 2023).
- Actelion Pharmaceuticals US, Inc. OPSUMIT- Macitentan Tablet, Film Coated. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=1e484a50-55db-4b85-8c57-6cd1b0353abd (accessed on 7 June 2023).
- Connor, T.; MacKenzie, B.; DeBord, D.; Trout, D.; O’Callaghan, J. NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016. Available online: https://stacks.cdc.gov/view/cdc/41372/cdc_41372_DS1.pdf (accessed on 4 July 2023).
- Pfizer Laboratories Div Pfizer Inc. REVATIO- Sildenafil Citrate Tablet, Film Coated; REVATIO- Sildenafil Citrate Injection, Solution; REVATIO- sildenafil Citrate Powder, for Suspension. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f158fe10-d5dc-4432-b2c9-fc665401291b (accessed on 7 June 2023).
- ADCIRCA- Tadalafil Tablet. Package Insert. United Therapeutics Corporation. 2022. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=ff61b237-be8e-461b-8114-78c52a8ad0ae (accessed on 7 June 2023).
- Keogh, A.M.; Jabbour, A.; Hayward, C.S.; Macdonald, P.S. Clinical deterioration after sildenafil cessation in patients with pulmonary hypertension. Vasc. Health Risk Manag. 2008, 4, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Apitz, C.; Reyes, J.T.; Holtby, H.; Humpl, T.; Redington, A.N. Pharmacokinetic and hemodynamic responses to oral sildenafil during invasive testing in children with pulmonary hypertension. J. Am. Coll. Cardiol. 2010, 55, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.L.E.; Cheung, K.L.; Siu, K.L.; Leung, T.F.; Yam, M.C.; Fok, T.F.; Ng, P.C. Oral sildenafil for treatment of severe pulmonary hypertension in an infant. Biol. Neonate 2005, 88, 109–112. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.H.A.; Cabral, L.M.; Huf, G. Current practices in the use of sildenafil for pulmonary arterial hypertension in Brazilian hospitals. BMC Res. Notes 2009, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Sildenafil: Drug Information. Available online: https://www.uptodate.com/contents/sildenafil-drug-information?source=auto_suggest&selectedTitle=1~1---1~4---sildena&search=sildenafil#F220980 (accessed on 7 June 2023).
- Iglarz, M.; Binkert, C.; Morrison, K.; Fischli, W.; Gatfield, J.; Treiber, A.; Weller, T.; Bolli, M.H.; Boss, C.; Buchmann, S.; et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 2008, 327, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.G.; Wang, L.; Pudasaini, B.; Yuan, P.; Jiang, R.; Zhao, Q.H.; He, J.; Zhang, R.; Wu, W.H.; Liu, J.M.; et al. Transition from Ambrisentan to Bosentan in Pulmonary Arterial Hypertension: A Single-Center Prospective Study. Can. Respir. J. 2018, 2018, 9836820. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.; Langleben, D.; Hirsch, A.M.; Schlesinger, R.D.; Eisenberg, M.J.; Joyal, D.; Blenkhorn, F.; Lesenko, L. Hemodynamic stability after transitioning between endothelin receptor antagonists in patients with pulmonary arterial hypertension. Can. J. Cardiol. 2013, 29, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Safdar, Z. Effect of transition from sitaxsentan to ambrisentan in pulmonary arterial hypertension. Vasc. Health Risk Manag. 2011, 7, 119–124. [Google Scholar] [CrossRef]
- United Therapeutics Corporation. ORENITRAM- Treprostinil Tablet, Extended Release; ORENITRAM- Treprostinil Kit. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8ed2003a-c801-411e-831e-d06079bb0d7c (accessed on 7 June 2023).
- Chakinala, M.M.; Feldman, J.P.; Rischard, F.; Mathier, M.; Broderick, M.; Leedom, N.; Laliberte, K.; White, R.J. Transition from parenteral to oral treprostinil in pulmonary arterial hypertension. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2017, 36, 193–201. [Google Scholar] [CrossRef] [PubMed]
- United Therapeutics Corporation. TYVASO DPI- Treprostinil Inhalant; TYVASO DPI- Treprostinil Kit. Package Insert. 2022. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=ddc3d400-bcb3-4b09-aae2-0768b10a5b0f (accessed on 7 June 2023).
- United Therapeutics Corporation. TYVASO- Treprostinil Inhalant. Package Insert. 2022. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=cbc31ab1-a80f-4b50-a3b1-39910b0fb609 (accessed on 7 June 2023).
- Actelion Pharmaceuticals US, Inc. VENTAVIS- Iloprost Solution. Package Insert. 2022. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d3bebc1c-f032-402a-bbc9-aff024276ed1 (accessed on 7 June 2023).
- Actelion Pharmaceuticals US, Inc. UPTRAVI- Selexipag Tablet, Coated; UPTRAVI TITRATION PACK- Selexipag Kit; UPTRAVI- Selexipag Injection, Powder, for Solution. Package Insert. 2023. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a7a23b87-f892-4e2c-8e2e-ebf841220f90 (accessed on 7 June 2023).
- Preston, I.R.; Channick, R.N.; Chin, K.; Di Scala, L.; Farber, H.W.; Gaine, S.; Galiè, N.; Ghofrani, H.-A.; Hoeper, M.M.; Lang, I.M.; et al. Temporary treatment interruptions with oral selexipag in pulmonary arterial hypertension: Insights from the Prostacyclin (PGI2) Receptor Agonist in Pulmonary Arterial Hypertension (GRIPHON) study. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2018, 37, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Broder, N.; Zolty, R. Pulmonary Arterial Hypertension in the ICU. In Critical Care; Oropello, J.M., Pastores, S.M., Kvetan, V., Eds.; McGraw-Hill Education: Singapore, 1AD; Available online: https://accessmedicine.mhmedical.com/content.aspx?aid=1136414325 (accessed on 7 June 2023).
- Hui-li, G. The management of acute pulmonary arterial hypertension. Cardiovasc. Ther. 2011, 29, 153–175. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Yu, S.J.; Tu, G.W.; Luo, Z. Inhaled pulmonary vasodilators: A narrative review. Ann. Transl. Med. 2021, 9, 597. [Google Scholar] [CrossRef] [PubMed]
Medication | Enteral Administration Options | Parenteral Administration Options | Management Recommendation for Oral/Inhaled Treatment Interruption |
---|---|---|---|
Ambrisentan | Oral tablet | N/A | Enteral access: oral tablet may not be crushed; switch to alternative enteral agent, such as sildenafil. Parenteral access: initiate alternative pulmonary vasodilators, such as IV sildenafil or epoprostenol. |
Bosentan | Oral tablet Soluble oral tablet | N/A | Enteral access: continue therapy if soluble oral tablet is available; if soluble oral tablet unavailable, switch to alternative enteral agent, such as sildenafil. Parenteral access: initiate alternative pulmonary vasodilators, such as IV sildenafil or epoprostenol. |
Macitentan | Oral tablet | N/A | Enteral access: oral tablet may not be crushed; switch to alternative enteral agent, such as sildenafil. Parenteral access: initiate alternative pulmonary vasodilators, such as IV sildenafil or epoprostenol. |
Sildenafil | Oral tablet Oral suspension | Intravenous | Enteral access: continue therapy with oral suspension or crushed tablet in 5 mL sterile water. Parenteral access: convert to IV sildenafil (1:2 IV:PO conversion). |
Tadalafil | Oral tablet Oral suspension | N/A | Enteral access: continue therapy with oral suspension or switch to sildenafil suspension/crushed tablet in 5 mL sterile water (40 mg daily tadalafil = 20 mg TID sildenafil). Parenteral access: convert to IV sildenafil. |
Treprostinil | Oral tablet | Intravenous Inhalation Subcutaneous | Enteral access: oral tablet may not be crushed; convert to enteral agent, such as sildenafil. Parenteral access: convert to parenteral treprostinil (in 70 kg patient, 1 mg TID PO = 6 ng/kg/min). |
Iloprost | N/A | Inhalation | Convert to alternate agent if unable to continue inhaled therapy. |
Selexipag | Oral tablet | Intravenous | Short-term (<3 days) treatment interruption likely safe. Enteral access: oral tablet may not be crushed; switch to alternative enteral therapy, such as sildenafil. Parenteral access: convert to IV selexipag (Table 1). |
Riociguat | Oral tablet | N/A | Enteral access: oral tablets should not be crushed; switch to alternative enteral therapy, such as sildenafil (must delay starting sildenafil for 24 h after last riociguat dose). Parenteral access: initiate alternative pulmonary vasodilators, such as IV sildenafil or epoprostenol. |
Medication | Metabolism | Elimination | Recommendations in Renal Failure | Recommendations in Hepatic Failure | Notable Drug–Drug Interactions |
---|---|---|---|---|---|
Ambrisentan | Hepatic via CYP3A4, CYP2C19, and UGT1A9S, 2B7S, and IA3S | Nonrenal | No dose adjustments | Avoid in moderate to severe hepatic impairment Discontinue if signs of liver injury | CYP3A4 and P-gp inhibition by cyclosporine results in increased ambrisentan exposure. Recommend maximum ambrisentan dose of 5 mg daily when co-administered with cyclosporine. |
Bosentan | Hepatic via CYP2C9 and CYP3A4 | Nonrenal | No dose adjustments | Avoid in moderate to severe hepatic impairment Discontinue if signs of liver injury | Moderate to strong CYP3A4 inhibitors (e.g., ritonavir, ketoconazole, cyclosporine) and CYP2C9 inhibitors (e.g., fluconazole, amiodarone) increase bosentan exposure. Recommend avoidance or dose reduction. Avoid co-administration with combinations of CYP2C9 and CYP3A4 inhibitors. CYP2C9 induction by bosentan may result in decreased HMG CoA reductase levels. Recommend monitoring. CYP3A4 induction by bosentan may reduce levels of CYP3A4 metabolized medications (e.g., cyclosporine, hormonal contraceptives). Avoid use or monitor closely as appropriate. Glyburide and cyclosporine contraindicated with bosentan due to hepatotoxicity risk. |
Macitentan | Hepatic via CYP3A4 (major), CYP2C8, CYP2C9, and CYP2C19 (minor) Metabolized to active metabolite | Nonrenal | No dose adjustments | No dose adjustments Discontinue if signs of liver injury | Moderate to strong CYP3A4 inhibitors (e.g., ritonavir, ketoconazole, cyclosporine) and CYP2C9 inhibitors (e.g., fluconazole, amiodarone) increase macitentan exposure. Recommend monitoring, dose reduction, or avoidance. Avoid co-administration with combinations of CYP2C9 and CYP3A4 inhibitors. Strong CYP3A4 inducers (e.g., rifampin) reduce macitentan levels. Avoid concomitant use. |
Sildenafil | Hepatic via CYP3A4 (major) and CYP2C9 (minor) Metabolized to active metabolites (50% potency) | Feces, urine (13%) | Consider dose reduction if CrCl < 30 mL/min or HD Monitor for adverse effects | Avoid in severe hepatic impairment | Concomitant nitrates and riociguat contraindicated. Strong CYP3A4 inhibitors (e.g., ritonavir, ketoconazole) increase sildenafil/tadalafil exposure—avoid use. Moderate to strong CYP3A4 inducers (e.g., bosentan, phenytoin, rifampin) reduce sildenafil/tadalafil exposure- may need increased dose. Recommend dose reduction when discontinuing concomitant CYP3A4 inducer. |
Tadalafil | Hepatic via CYP3A4 | Feces, urine (36%) | Avoid if CrCl < 30 mL/min or HD | Avoid in severe hepatic impairment | |
Treprostinil | Hepatic via CYP2C8 (major) and CYP2C9 (minor) | Urine (mostly inactive metabolites, only 4% unchanged) | No dose adjustments | Contraindicated in severe hepatic impairment | Strong CYP2C8 inhibition by gemfibrozil results in increased treprostinil exposure, recommend starting dose reduction to 0.125 mg BID. |
Iloprost | Hepatic via beta-oxidation of carboxyl side chain | Urine (68%), feces | No dose adjustments | No dose adjustments | No notable CYP metabolic interactions. |
Selexipag | Hydrolyzed to active metabolite by carboxylesterase Hepatic via CYP2C8 (major) and CYP3A4 (minor), UGT1A3 and UGT2B7 | Feces, urine (12%) | Avoid if CrCl <15 or HD | Decrease frequency to once daily in moderate hepatic impairment Avoid in severe hepatic impairment | Strong CYP2C8 inhibitors (e.g., gemfibrozil) increase selexipag exposure—avoid use. Moderate CYP2C8 inhibitors (e.g., clopidogrel, leflunomide) increase selexipag exposure—recommend dose reduction to once daily. CYP2C8 inducers (e.g., rifampin) decrease selexipag exposure, recommend increasing dose when initiating interacting medication and dose reduction if discontinuing interacting medication. |
Riociguat | Hepatic via CYP1A1, CYP3A4, CYP3A5, and CYP2J2 | Urine | Avoid if CrCL < 15 mL/min or HD | Avoid in severe hepatic impairment | Concomitant nitrates and PDE-5 inhibitors contraindicated. Separate from antiacid medication by at least 1 h due to decreased absorption at increased pH. Strong CYP3A and P-gp/BCRP inhibitors (e.g., ritonavir, ketoconazole, itraconazole) increase riociguat exposure—recommend a reduction in starting dose to 0.5 mg TID and monitoring for hypotension. Strong CYP3A inducers (e.g., phenytoin, rifampin, carbamazepine) reduce riociguat exposure. No dosing recommendations exist. Tobacco smoke is a CYP1A1 inducer, resulting in reduced riociguat exposure. In patients on increased doses of riociguat due to smoking, dose reduction may be prudent in admitted patients who are no longer smoking. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foster, E.M.; Sullinger, D.; Coons, J.C. Management Considerations for Pulmonary Arterial Hypertension Pharmacotherapy in the Intensive Care Unit. Pharmacy 2023, 11, 145. https://doi.org/10.3390/pharmacy11050145
Foster EM, Sullinger D, Coons JC. Management Considerations for Pulmonary Arterial Hypertension Pharmacotherapy in the Intensive Care Unit. Pharmacy. 2023; 11(5):145. https://doi.org/10.3390/pharmacy11050145
Chicago/Turabian StyleFoster, Elizabeth M., Danine Sullinger, and James C. Coons. 2023. "Management Considerations for Pulmonary Arterial Hypertension Pharmacotherapy in the Intensive Care Unit" Pharmacy 11, no. 5: 145. https://doi.org/10.3390/pharmacy11050145
APA StyleFoster, E. M., Sullinger, D., & Coons, J. C. (2023). Management Considerations for Pulmonary Arterial Hypertension Pharmacotherapy in the Intensive Care Unit. Pharmacy, 11(5), 145. https://doi.org/10.3390/pharmacy11050145