Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III
Abstract
:1. Introduction
2. Literature Review
3. Methodology of the Study
3.1. NSGA-III for Multi-Objective Optimization
3.1.1. Initialization
3.1.2. Reference Point Generation
- Maximize .
- Minimize .
- Maximize .
- Minimize .
3.1.3. Selection
3.1.4. Reference Point Association
3.1.5. Niching and Survival Selection
3.1.6. Crossover and Mutation
3.1.7. Termination
4. Empirical Analysis
4.1. Data
4.2. Optimization Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition |
References
- Abid, M. A., Mahdiraji, S. A., Lorig, F., Holmgren, J., Mihailescu, R. C., & Petersson, J. (2023). A genetic algorithm for optimizing mobile stroke unit deployment. Procedia Computer Science, 225, 3536–3545. [Google Scholar] [CrossRef]
- Abo-Alsabeh, R. R., & Salhi, A. (2022). The genetic algorithm: A study survey. Iraqi Journal of Science, 63(3), 1215–1231. [Google Scholar]
- Ali, F., Bouri, E., Naifar, N., Shahzad, S. J. H., & AlAhmad, M. (2022). An examination of whether gold-backed Islamic cryptocurrencies are safe havens for international Islamic equity markets. Research in International Business and Finance, 63, 101768. [Google Scholar] [CrossRef]
- Awad, M., Abouhawwash, M., & Agiza, H. N. (2022). On NSGA-II and NSGA-III in portfolio management. Intelligent Automation & Soft Computing, 32(3), 1893–1904. [Google Scholar] [CrossRef]
- Cheng, X., Li, Y., Wang, H., & Zhang, Z. (2018). Conditional Value-at-Risk and Conditional Sharpe ratio: Metrics for resilient portfolio optimization. Journal of Financial Optimization, 25(3), 101–120. [Google Scholar]
- Chung, S. C. (2023). Topology optimization of thin-coated structures [Doctoral dissertation, University of Toronto (Canada)]. [Google Scholar]
- Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601. [Google Scholar] [CrossRef]
- Deb, M., Banerjee, R., Majumder, A., & Sastry, G. R. K. (2014). Multi objective optimization of performance parameters of a single cylinder diesel engine with hydrogen as a dual fuel using pareto-based genetic algorithm. International Journal of Hydrogen Energy, 39(15), 8063–8077. [Google Scholar] [CrossRef]
- Deb, K., Jain, H., & Gupta, R. (2017). Conditional expected drawdown (CED): A tail-risk measure for portfolio optimization. Mathematical Finance, 27(4), 817–834. [Google Scholar] [CrossRef]
- Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. [Google Scholar] [CrossRef]
- DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Review of Financial Studies, 22(5), 1915–1953. [Google Scholar] [CrossRef]
- Dorokhov, Y. (2023). Conditional value at risk portfolio optimization with macroeconomic factor models [Doctoral dissertation, Kyiv School of Economics]. Available online: https://kse.ua/wp-content/uploads/2023/07/Thesis_Dorokhov.pdf (accessed on 13 January 2025).
- Fernando, G., Jairom, G.-B., Francisco, G., Javier, O., & Rima, T. (2020). Multiobjective approach to portfolio optimization in the light of the credibility theory. Technological and Economic Develipment of Economy, 16(6), 1165–1186. [Google Scholar] [CrossRef]
- Gupta, R., Zhang, X., & Deb, K. (2021). A comparative analysis of multi-objective evolutionary algorithms for portfolio optimization. Annals of Operations Research, 297(1–2), 457–478. [Google Scholar]
- Harvey, C. R., Liu, Y., & Zhu, H. (2016). …and the cross-section of expected returns. Review of Financial Studies, 29(1), 5–68. [Google Scholar] [CrossRef]
- He, X., & Zhou, X. (2020). Multi-objective optimization in portfolio selection: Incorporating higher-order moments. Computational Economics, 56(2), 231–248. [Google Scholar]
- Jafari, H., Nazif, S., & Rajaee, T. (2022). A multi-objective optimization method based on NSGA-III for water quality sensor placement with the aim of reducing potential contamination of important nodes. Water Supply, 22(1), 928–944. [Google Scholar] [CrossRef]
- Jain, H., & Deb, K. (2013). An improved adaptive algorithm for finding a well-distributed set of Pareto-optimal solutions. ACM Transactions on Mathematical Software, 39(2), 19. [Google Scholar]
- Kanade, V. (2023). What are genetic algorithms? Working, applications, and examples. Spiceworks, Artificial Intelligence. [Google Scholar]
- Li, X., Chen, G., & Zhang, Z. (2018). A comparative study of NSGA-II, NSGA-III, and MOEA/D for financial portfolio optimization. Swarm and Evolutionary Computation, 40, 179–190. [Google Scholar]
- Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. [Google Scholar]
- Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. Journal of Financial Economics, 125(3), 607–622. [Google Scholar]
- Mujahid, T. (2014). A genetic algorithm analysis towards optimization solutions. International Journal of Digital Information and Wireless Communications, 4(2), 260–272. [Google Scholar]
- Naqvi, B., Mirza, N., Naqvi, W. A., & Rizvi, S. K. A. (2017). Portfolio optimisation with high moments of risk at the Pakistan stock exchange. Economic, Research-Ekonomska Istrazivanja, 30, 1594–1610. [Google Scholar] [CrossRef]
- Ouyang, J., Li, X., & He, J. (2018). NSGA-III for credit risk assessment and asset-liability management. Financial Innovation, 4(2), 213–229. [Google Scholar]
- Peeters, B. (2023). Empirical assessments of financial interdependencies since the 1970s [Doctoral dissertation, USL-B-Université Saint-Louis]. [Google Scholar]
- Rudolph, G., Hansen, N., & Deb, K. (2016, July 24–29). Beyond standard deviation: Downside risk measures in evolutionary multi-objective optimization. IEEE Congress on Evolutionary Computation (pp. 2345–2352), Vancouver, BC, Canada. [Google Scholar]
- Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1), 119–138. [Google Scholar] [CrossRef]
- Silva, P., Andrade, M., & Costa, R. (2024). Multi-objective optimization of responsible sourcing, consumption, and production in construction supply chains using NSGA-III. Clean Technologies and Environmental Policy. [Google Scholar] [CrossRef]
- Simo, A., Zhang, X., & Li, Y. (2024). Near-tight runtime guarantees for many-objective evolutionary algorithms. arXiv, arXiv:2404.12746. [Google Scholar]
- Thomas, G. H., & Douglas, E. J. (2024). Resource reconfiguration by surviving SMEs in a disrupted industry. Journal of Small Business Management, 62(1), 140–174. [Google Scholar] [CrossRef]
- Tong, X. (2024). Application of mean-variance model of 11 industries in Chinese a share market. Highlights in Business, Economics and Management, 39, 29–35. [Google Scholar] [CrossRef]
- Vesikar, Y., Deb, K., & Blank, J. (2018, November 18–21). Reference point based NSGA-III for preferred solutions. 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1587–1594), Bangalore, India. [Google Scholar] [CrossRef]
- Wang, H., Li, J., Wu, H., Hovy, E., & Sun, Y. (2023). Pre-trained language models and their applications. Engineering, 25, 51–65. [Google Scholar] [CrossRef]
- Wietheger, S., & Doerr, B. (2024). Near-tight runtime guarantees for many-objective evolutionary algorithms. In Parallel problem solving from nature (pp. 153–168). Springer. [Google Scholar]
Mean | Min | 25% | 50% | 75% | Max | Std | |
---|---|---|---|---|---|---|---|
FTSE100 | 0.0002 | −0.1087 | −0.0048 | 0.0005 | 0.0056 | 0.0984 | 0.0113 |
SP500 | 0.0004 | −0.0911 | −0.0039 | 0.0008 | 0.0055 | 0.1067 | 0.0112 |
NASDAQ | 0.0006 | −0.1219 | −0.0053 | 0.0011 | 0.0074 | 0.1258 | 0.0140 |
DAX | 0.0004 | −0.1224 | −0.0055 | 0.0009 | 0.0068 | 0.1140 | 0.0133 |
ALSI | 0.0004 | −0.0972 | −0.0058 | 0.0006 | 0.0070 | 0.0947 | 0.0122 |
MOEX | 0.0005 | −0.3328 | −0.0065 | 0.0007 | 0.0083 | 0.2869 | 0.0190 |
BOVESPA | 0.0005 | −0.1478 | −0.0082 | 0.0007 | 0.0095 | 0.1466 | 0.0168 |
Shanghai | 0.0003 | −0.0884 | −0.0061 | 0.0006 | 0.0074 | 0.0946 | 0.0150 |
Sensex | 0.0006 | −0.1315 | −0.0053 | 0.0009 | 0.0070 | 0.1734 | 0.0135 |
HangSeng | 0.0002 | −0.1270 | −0.0071 | 0.0004 | 0.0075 | 0.1435 | 0.0150 |
ZAR/USD | −0.0002 | −0.1482 | −0.0063 | 0.0001 | 0.0064 | 0.0729 | 0.0106 |
Asset | NSGA-III Weights | Mean–Variance Weights |
---|---|---|
FTSE100 | 0.01622029 | 0.09090909 |
SP500 | 0.07597128 | 0.09090909 |
NASDAQ | 0.10497395 | 0.09090909 |
DAX | 0.25618561 | 0.09090909 |
ALSI | 0.02443839 | 0.09090909 |
MOEX | 0.12726688 | 0.09090909 |
BOVESPA | 0.02645138 | 0.09090909 |
ShanghaiSE | 0.07819937 | 0.09090909 |
Sensex | 0.24180201 | 0.09090909 |
HangSeng | 0.02431681 | 0.09090809 |
ZAR/USD | 0.02417403 | 0.09090709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muteba Mwamba, J.W.; Mbucici, L.M.; Mba, J.C. Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III. Int. J. Financial Stud. 2025, 13, 15. https://doi.org/10.3390/ijfs13010015
Muteba Mwamba JW, Mbucici LM, Mba JC. Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III. International Journal of Financial Studies. 2025; 13(1):15. https://doi.org/10.3390/ijfs13010015
Chicago/Turabian StyleMuteba Mwamba, John Weirstrass, Leon Mishindo Mbucici, and Jules Clement Mba. 2025. "Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III" International Journal of Financial Studies 13, no. 1: 15. https://doi.org/10.3390/ijfs13010015
APA StyleMuteba Mwamba, J. W., Mbucici, L. M., & Mba, J. C. (2025). Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III. International Journal of Financial Studies, 13(1), 15. https://doi.org/10.3390/ijfs13010015