Modular Multi-Input DC/DC Converter for EV Fast Charging
Abstract
:1. Introduction
2. Proposed Topology
2.1. Design of the Multi-Input Converter
2.2. Control of the Converter
2.3. The Operation Modes of the Converter
2.3.1. Mode 1: Battery to DC Link
2.3.2. Mode 2: Supercapacitor to DC Link
2.3.3. Mode 3: Battery and Supercapacitor
2.3.4. Mode 4: Battery and Supercapacitor to DC Link
2.3.5. Mode 5: DC Link to Battery and Supercapacitor
3. Losses and Efficiency of the Proposed Converter
4. The Proposed Fast-Charging Station
4.1. The Design of the Buck Converter
4.2. The Control of the Buck Converter
5. Results
5.1. Simulation Results
5.2. Experimental Results
5.2.1. Supplying the DC Link from the Battery Alone
5.2.2. Supplying the DC Link from the Supercapacitor Only
5.2.3. Supplying the Battery from the Supercapacitor
5.2.4. Supplying the DC Link from the Battery and the Supercapacitor
5.2.5. Charging the Battery and the Supercapacitor from the DC Link
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalid, M.; Ahmad, F.; Panigrahi, B.K.; Al-Fagih, L. A comprehensive review on advanced charging topologies and methodologies for electric vehicle battery. J. Energy Storage 2022, 53, 105084. [Google Scholar] [CrossRef]
- Khalid, M.; Ahmad, F.; Panigrahi, B.K. Design, simulation and analysis of a fast charging station for electric vehicles. Energy Storage 2021, 3, e263. [Google Scholar] [CrossRef]
- Kostopoulos, E.D.; Spyropoulos, G.C.; Kaldellis, J.K. Real-world study for the optimal charging of electric vehicles. Energy Rep. 2020, 6, 418–426. [Google Scholar] [CrossRef]
- Chakraborty, S.; Vu, H.-N.; Hasan, M.M.; Tran, D.-D.; Baghdadi, M.E.; Hegazy, O. DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. Energies 2019, 12, 1569. [Google Scholar] [CrossRef] [Green Version]
- Dhananjaya, M.; Pattnaik, S. Design and implementation of a multi-input single-output DC-DC converter. In Proceedings of the 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, 26 February–1 March 2019; pp. 194–199. [Google Scholar]
- Athikkal, S.; Sundaramoorthy, K.; Sankar, A. Development and performance analysis of dual-input DC-DC converters for DC microgrid application. IEEE J. Trans. Electr. Electron. Eng. 2018, 13, 1034–1043. [Google Scholar] [CrossRef]
- Jeong, Y.; Park, J.; Rorrer, R.; Kim, K.; Lee, B. A Novel multi-input and single-output DC/DC converter for small unmanned aerial vehicle. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 1302–1308. [Google Scholar]
- Faraji, R.; Ding, L.; Esteki, M.; Mazloum, N.; Khajehoddin, S.A. Soft-switched single inductor single stage multiport bidirectional power converter for hybrid energy systems. IEEE Trans. Power Electron. 2021, 36, 11298–11315. [Google Scholar] [CrossRef]
- Hegazy, O.; Barrero, R.; Van Mierlo, J.; Lataire, P.; Omar, N.; Coosemans, T. An Advanced Power Electronics Interface for Electric Vehicles Applications. IEEE Trans. Power Electron. 2013, 28, 5508–5521. [Google Scholar] [CrossRef]
- Meshkati, E.; Packnezhad, M.; Farzanehfard, H. Single Inductor Bidirectional Multi-Input Converter with Continuous Battery Current Based on Integration of Buck and Three Port Boost Topologies. In Proceedings of the 2022 13th Power Electronics, Drive Systems, Tehran, Iran, 1–3 February 2022; IEEE: Piscataway, NJ, USA; pp. 362–367.
- Saadatizadeh, Z.; Heris, P.C.; Liang, X.; Babaei, E. Expandable Non-Isolated Multi-Input Single-Output DC-DC Converter with High Voltage Gain and Zero-Ripple Input Currents. IEEE Access 2021, 9, 169193–169219. [Google Scholar] [CrossRef]
- Cai, J.; Zhong, Q.-C. Compact bidirectional DC-DC converters with two input sources. In Proceedings of the 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Galway, Ireland, 24–27 June 2014; pp. 1–5. [Google Scholar]
- Hintz, A.; Prasanna, U.R.; Rajashekara, K. Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application. IEEE Trans. Ind. Electron. 2015, 62, 3163–3172. [Google Scholar] [CrossRef]
- Hasan, A.R. Modeling, Design, Control and Validation of a Multiple-Input DC-DC Converter Topology for Effective Renewable Energy Management. Ph.D. Thesis, Ontario Tech University, Oshawa, ON, Canada, 2019. [Google Scholar]
- Lopa, S.A.; Hossain, S.; Hasan, M.K.; Chakraborty, T.K. Design and Simulation of DC-DC Converters. Int. Res. J. Eng. Technol. 2016, 3, 62–70. [Google Scholar]
- SAE International Website. Available online: https://www.sae.org/standards/content/j1772_201001/ (accessed on 14 November 2020).
Reference | Title | Number of the Components | Number of Operation Modes | Power Flow Capability | Modularity |
---|---|---|---|---|---|
[5] | Design and implementation of a multi-input single-output DC-DC converter. | 7 | 2 | Unidirectional | No |
[6] | Development and performance analysis of dual-input DC-DC converters for DC microgrid application. | 4 | 2 | Unidirectional | No |
[7] | A Novel multi-input and single-output DC/DC converter for small unmanned aerial vehicle | 7 | 2 | Bidirectional | No |
[8] | Soft-switched single inductor single stage multiport bidirectional power converter for hybrid energy systems. | 14 | 6 | Bidirectional | No |
[9] | An Advanced Power Electronics Interface for Electric Vehicles Applications. | 10 | 2 | Bidirectional | Yes |
[10] | Single Inductor Bidirectional Multi-Input Converter with Continuous Battery Current Based on Integration of Buck and Three Port Boost Topologies. | 9 | 7 | Bidirectional | No |
[11] | Expandable Non-Isolated Multi-Input Single-Output DC-DC Converter with High Voltage Gain and Zero-Ripple Input Currents. | 14 | 2 | Unidirectional | Yes |
[12,13,14] | Dual-Input Non-isolated DC-DC Converter with Vehicle to Grid Feature. | 5 | 6 | Bidirectional | Yes |
Mode | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
- | |||||
- |
Specification | Switching Frequency (fs) | Power | |||||
---|---|---|---|---|---|---|---|
Values | 200 V | 160 V | 500 V | 20 kHz | 0.75 mH and 0.75 mH | 500 μF | 17 kW |
Mode 1(a) | Mode 1(b) | Mode 2(a) | Mode 2(b) | Mode 3(a) | Mode 3(b) | |
---|---|---|---|---|---|---|
mode 4 | , , | , | , | , | |
mode 5 | , , | , | , , | , , | , |
Total | |||||||
---|---|---|---|---|---|---|---|
mode 1(a) | 2.8 W | 6.6 W | 55.9 W | 23. 7 W | - | - | 89 W |
mode 1(b) | 6.7 W | 16.3 W | 9.5 W | 3.8 W | - | - | 36.3 W |
mode 2(a) | 3 W | 13.11 W | - | - | 14.2 W | 4 W | 33 W |
mode 2(b) | 63 W | 183 W | - | - | 176 W | 57 W | 479 W |
mode 3(a) | - | - | 48 W | - | 32 W | 13 W | 96 W |
mode 3(b) | - | - | 45 W | - | 32 W | 13 W | 90 W |
mode 4 | 3 W | 12 W | 3.2 W | 3.7 W | 1.2 W | 0.38 W | 23 W |
mode 5 | 5.6 W | 12.4 W | 4.3 W | 0.9 W | 3.8 W | 0 W | 27 W |
Total | |||||||
---|---|---|---|---|---|---|---|
mode 1(a) | 0.25 W | 6.6 W | 52 W | 2.12 W | - | - | 63.97 W |
mode 1(b) | 6.7 W | 1.5 W | 0.87 W | 3.8 W | - | - | 12.87 W |
mode 2(a) | 0.27 W | 13.2 W | - | - | 14.24 W | 0.37 W | 28.08 W |
mode 2(b) | 62.7 W | 16.5 W | - | - | 15.8 W | 57 W | 152 W |
mode 3(a) | - | - | 855 W | - | 40 W | 400 W | 1295 W |
mode 3(b) | - | - | 4 W | - | 31.7 W | 1.6 W | 37.3 W |
mode 4 | 0.28 W | 12 W | 3.25 W | 0.33 W | 1.26 W | 0.035 W | 17.16 W |
mode 5 | 5.6 W | 1.12 W | 0.39 W | 0.94 W | 0.35 W | 0 W | 8.4 W |
Mode 1(a) | Mode 1(b) | Mode 2(a) | Mode 2(b) | Mode 3(a) | Mode 3(b) | Mode 4 | Mode 5 | |
---|---|---|---|---|---|---|---|---|
4000 W | 2100 W | 1520 W | 2100 W | 9000 W | 2200 W | 1200 W | 2100 W | |
3847 W | 2051 W | 1471 W | 1469 W | 7609 W | 2073 W | 1160 W | 2065 W | |
Efficiency | 96.18% | 97.60% | 96.70% | 70% | 85% | 98.70% | 96.70% | 98.30% |
Specifications | Input Voltage | Output Voltage | Switching Frequency (fs) | Power | ||
---|---|---|---|---|---|---|
Values | 500 V | 350 V | 20 kHz | 5 mH | 50 μF | 17 kW |
Specifications | Battery | Supercapacitor | DC Link | Inductor (L1) | Inductor (L2) | Capacitor (C) | Switching Frequency (fs) | Load | Power |
---|---|---|---|---|---|---|---|---|---|
Values | 12 V | 15 V | 24 V | 2 mH | 2 mH | 100 μF | 30 kHz | 10 kΩ | 100 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbar, H.A.; Elshora, A. Modular Multi-Input DC/DC Converter for EV Fast Charging. Technologies 2022, 10, 113. https://doi.org/10.3390/technologies10060113
Gabbar HA, Elshora A. Modular Multi-Input DC/DC Converter for EV Fast Charging. Technologies. 2022; 10(6):113. https://doi.org/10.3390/technologies10060113
Chicago/Turabian StyleGabbar, Hossam A., and Abdalrahman Elshora. 2022. "Modular Multi-Input DC/DC Converter for EV Fast Charging" Technologies 10, no. 6: 113. https://doi.org/10.3390/technologies10060113
APA StyleGabbar, H. A., & Elshora, A. (2022). Modular Multi-Input DC/DC Converter for EV Fast Charging. Technologies, 10(6), 113. https://doi.org/10.3390/technologies10060113