Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey
Abstract
:1. Introduction
- 1
- The classification of the different control topologies of the modern DC–DC converters and an amalgamation of various MPPT approaches integrated with sustainable nanogrid and picogrid architectures for the enhancement of technoeconomic feasibility in the power sector of a country.
- 2
- The promotion of the environmental impact of solar power generation to be interfaced with grid either in standalone mode or grid-connected mode for empirical development. Statistical data from the U.S. Energy Information Administration regarding the percentage of conventional or renewable energy used in the environment is considered.
- 3
- Addressing the intermittency issue of solar power generation. A control strategy will be established by realizing maximum power point tracking, voltage and current of DC links, and q-axis by applying adaptive strategies and simulating different controllers.
- 4
- The discussion of the proposed controller with respect to smaller oscillations, less power loss, fast convergence, and the capability of following true maximum power point (MPP) under rapidly varying ambient conditions. The benefits are that it will be able to enhance the operating area of controllers; thus, it will be able to implement a more accurate signal to get optimum output from the converter as per the load requirement within the proved step response to work under the desired width.
2. Interfacing of Solar Power Generation
2.1. DC Nanogrid and Picogrids Architecture and Control
- The encouragement of entrepreneurship and employment in the agricultural sector due to the incorporation of new technologies, like smart irrigation, smart power management, climate control and change, waste management, etc.
- The prior objective of the Energy Policy 2020 was energy security with the advancement of sustainable energies in global supply contributions.
- A regulation called FAME (Faster Adoption and Manufacturing of Electric Vehicles) has been pioneered to promote the usage of e-mobility.
- The Smart Cities Mission established the need to involve more than 100 cities across the country in the reduction in energy consumption, the enhancement of infrastructure, the enhancement of energy efficiency, etc.
- The Government of India is planning to invest more into the implementation of EV charging infrastructure and suitable planning to integrate it into the distribution grid for the overall development of the region.
3. Analysis of Various MPPT Methodologies
4. System Description
5. DC–DC Power Converter Topologies in Sustainable Energy System
5.1. Progression of DC–DCPower Converter Topologies for Solar Power Generation
- (i)
- Low gain low power (LGLP);
- (ii)
- Low gain high power (LGHP);
- (iii)
- High gain low power (HGLP);
- (iv)
- High gain high power (HGHP).
5.2. Low Power High Gain Boost DC–DCConverter Associated in PV Application
5.2.1. VMC
5.2.2. Voltage Doublers
5.2.3. Cascading Topologies
Quadratic Boost
6. Modern DC–DC Bidirectional Converter Strategies in a Sustainable PV Architecture
6.1. Bidirectional DC–DC Converter
6.2. Triple Port Integrated Topology (TPIT)
- Renewable-to-grid (R2G) mode: In this mode, the power generated by the solar PV is given to the electric grid via a chopper (DC–DC converter) and then to a DC–AC converter. The bidirectional AC–DC converter works as an inverter in this mode.
- Renewable-to-vehicle (R2V) mode: In this mode, the generated PV power is used to charge the electric vehicle’s battery. The bidirectional converter allows the current flow such that the battery charges and the SOC also increase.
- Vehicle-to-grid (V2G) mode: In this operating mode, the electric vehicle supplies the required power to grid. This mode ensures uninterrupted supply in the system.
- Grid-to-vehicle mode: When the required power by the vehicle is not generated by solar then the grid supplies the excess power demand via this operating mode. The ac power from the grid is converted to dc via AC–DC converter and it charges the battery. SOC of the battery increases in this case.
6.3. Three-Port DC–DC Converter
6.4. SEPIC Converter
7. Conclusions and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Policies and Measures, India, National Action Plan on Climate Change; IEA: Paris, France, 2019. [Google Scholar]
- Hashimoto, J.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hasegawa, M.; Otani, K. Advanced Grid Integration Test Platform for Increased Distributed Renewable Energy Penetration in Smart Grids. IEEE Access 2021, 9, 34040–34053. [Google Scholar] [CrossRef]
- Ustun, T.S.; Aoto, Y.; Hashimoto, J.; Otani, K. Optimal PV-INV Capacity Ratio for Residential Smart Inverters Operating under Different Control Modes. IEEE Access 2020, 8, 116078–116089. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Ali, I.; Ustun, T.S. Handbook of Research on Power and Energy System Optimization; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- IEA. Policies and Measure, India, National Mission for Enhanced Energy Efficiency (NMEEE); IEA: Paris, France, 2019. [Google Scholar]
- Reshma Gopi, R.; Sreejith, S. Converter topologies in photovoltaic applications—A review. Renew. Sustain. Energy Rev. 2014, 94, 1–14. [Google Scholar] [CrossRef]
- Qin, L.; Lu, X. Engineering Matlab/Simulink based research on Maximum power point tracking of photovoltaic generation “International conference on applied physics and industrial engineering. Phys. Procedia 2012, 24, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Hiren, P.; Bibek, A. Matlab based modeling to study the effects of partial shading on PV array characteristics. IEEE Trans. Energy Convers. 2008, 23, 302–310. [Google Scholar]
- Xu, Z.; Mohsin, M.; Ullah, K.; Ma, X. Using econometric and machine learning models to forecast crude oil prices: Insights from economic history. Resour. Policy 2023, 83, 103614. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Nguyen, V.T.; Duong, M.Q.; Le, K.H.; Nguyen, H.H.; Doan, A.T. Propose a MPPT algorithm based on Thevenin equivalent circuit for improving photovoltaic operation. Front. Energy Res. 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Current utilization of micro turbines as a part of a hybrid system in distributed generation technology. Renew. Sustain. Energy Rev. 2013, 21, 142–152. [Google Scholar] [CrossRef]
- Hussain, I.; Das, D.C.; Sinha, N.; Latif, A.; Hussain, S.M. Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller. Energies 2020, 13, 5610. [Google Scholar] [CrossRef]
- Chauhan, A.; Khan, M.T.; Srivastava, A. Techno-Economic Assessment and Environmental Analysis of an Optimal Hybrid System under Novel Demand Response Scheme for a Remote Region of India. Energy Rep. 2022, 8, 284–291. [Google Scholar] [CrossRef]
- Jiang, M.; Ghahremani, M.; Dadfar, S.; Chi, H.; Abdallah, Y.N.; Furukawa, N. A novel combinatorial hybrid SFL-PS algorithm based neural network with Perturb and Observe for the MPPT controller of a hybrid PV storage system. Control Eng. Pract. 2016, 114, 104880. [Google Scholar] [CrossRef]
- Mirza, A.F.; Mansoor, M.; Ling, Q.; Yin, B.; Javed, M.Y. A salp-swarm optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions. Energy Convers. Manag. 2020, 209, 112625. [Google Scholar] [CrossRef]
- Fares, D.; Fathi, M.; Shams, I.; Mekhilef, S. A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions. Energy Convers. Manag. 2021, 230, 113773. [Google Scholar] [CrossRef]
- Ulutas, A.; Altas, I.H.; Onen, A. Neuro-Fuzzy-Based Model Predictive Energy Management for Grid Connected Microgrids. Electronics 2020, 9, 900. [Google Scholar] [CrossRef]
- Avila, L.; De Paula, M.; Trimboli, M.; Carlucho, I. Deep reinforcement learning approach for MPPT control of partially shaded PV systems in smart grid. J. Appl. Soft Comput. 2020, 97, 106711. [Google Scholar] [CrossRef]
- El-Helw, H.M.; Magdy, A.; Marei, M.I. A hybrid maximum power point tracking technique for partially shaded photovoltaic arrays. IEEE Access 2017, 5, 11900–11908. [Google Scholar] [CrossRef]
- Mahafzah, K.A.; Obeidat, M.A.; Al-Shetwi, A.Q.; Ustun, T.S. A Novel Synchronized Multiple Output DC-DC Converter Based on Hybrid Flyback-Cuk Topologies. Batteries 2022, 8, 93. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J. Agent-based energy management and control of a grid connected wind/solar hybrid power system. In Proceedings of the IEEE International Conference on Electrical Machines and Systems (ICEMS), Wuhan, China, 17–20 October 2008; pp. 2362–2365. [Google Scholar]
- Zeng, Z.; Yang, H.; Zhao, R.; Cheng, C. Topologies and control strategies of multifunctional grid connected inverters for power quality enhancement: A comprehensive review. J. Renew. Sustain. Energy 2013, 24, 223–270. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC micro grids vs. DC micro grids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Esram, T.; Chapman, P.L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 2007, 22, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Tavares, C.A.; Leite, K.T.; Suemitsu, W.I.; Bellar, M.D. Performance evaluation of photovoltaic solar system with different MPPT methods. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009. [Google Scholar]
- Li, J.; Wang, H. A novel stand-alone PV generation system based on variable step size INC MPPT and SVPWM control. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 2155–2160. [Google Scholar]
- Yang, Y.R. A fuzzy logic controller for maximum power point tracking with 8-bit microcontroller. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 2895–2900. [Google Scholar]
- Liu, Y.H.; Liu, C.; Huang, J.W.; Chen, J.H. Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 2013, 89, 42–53. [Google Scholar] [CrossRef]
- Islam, M.A.; Talukdar, A.B.; Mohammad, N.; Shadhu Khan, P.K. Maximum power point tracking of photovoltaic arrays in matlab using fuzzy logic controller. In Proceedings of the 2010 Annual IEEE India Conference (INDICON), Kolkata, India, 7–19 December 2010; pp. 1–4. [Google Scholar]
- Subiyanto; Mohamed, A.; Hannan, M. Hardware implementation of fuzzy logic based maximum power point tracking controller for PV systems. In Proceedings of the 2010 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, Malaysia, 23–24 June 2010; pp. 435–439, ISBN 978-1-4244-7128-7/10. [Google Scholar]
- Ustun, T.S.; Hussain, S.M.S. Secure Communication Modeling for Microgrid Energy Management System: Development and Application. Energies 2020, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Ashok Kumar, B.; Srinivasa Venkatesh, M.; Mohan Muralikrishna, G. Optimization of Photovoltaic Power Using PID MPPT Controller Based on Incremental Conductance Algorithm. In Power Electronics and Renewable Energy Systems; Springer: New Delhi, India, 2015. [Google Scholar]
- Rebhi, M.; Benatillah, A.; Sellam, M.; Kadri, B. Comparative Study of MPPT Controllers for PV System Implemented in the Southwest of Algeria. Energy Procedia 2013, 36, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Anto, E.K.; Asumadu, J.A.; Okyere, P.Y. Comparing peformance of PID and fuzzy controllers in the presence of noise for a Photovoltaic System. J. Math. Comput. Sci. 2014, 9, 69–76. [Google Scholar]
- Mallika, S.R. Saravanakumar Genetic Algorithm Based MPPT Controller for Photovoltaic System. Int. Electr. Eng. J. 2013, 4, 1159–1164. [Google Scholar]
- Panda, A.; Pathak, M.K.; Srivastava, S.P. Fuzzy Intelligent Controller for Maximum Power Point Tracking of a Photovoltaic Module at varying atmosphere conditions. J. Energy Technol. Policy 2011, 1, 18–27. [Google Scholar]
- Anto, E.K.; Asumadu, J.A.; Okyere, P.Y. PID-based P&O MPPT Controller for Off grid Solar PV Systems Using Ziegler-Nichols Tuning Method to Step, Ramp and Impulse Inputs. J. Multidiscip. Eng. Sci. Stud. 2016, 2, 669–680. [Google Scholar]
- Al-Diab, A.; Sourkounis, C. Variable step size PO MPPT algorithm for PV systems. In Proceedings of the 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010; pp. 1097–1102. [Google Scholar]
- Ustun, T.S.; Hashimoto, J.; Otani, K. Using RSCAD’s Simplified Inverter Components to Model Smart Inverters in Power Systems. In Proceedings of the 2018 IEEE Workshop on Complexity in Engineering (COMPENG), Florence, Italy, 10–12 October 2018; pp. 1–6. [Google Scholar]
- Kamarzaman, N.A.; Tan, C.W. A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renew. Sustain. Energy Rev. 2014, 37, 585–598. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. MPPT techniques for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 25, 793–813. [Google Scholar] [CrossRef]
- Tey, K.S.; Mekhilef, S. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast charging solar irradiation level. Sol. Energy 2014, 101, 333–342. [Google Scholar] [CrossRef]
- Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev. 2013, 19, 433–443. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Chen, J.-H.; Huang, J.-W. A review of maximum power point tracking techniques for use in partially shaded conditions. Renew. Sustain. Energy Rev. 2015, 41, 436–453. [Google Scholar] [CrossRef]
- Letting, L.K.; Munda, J.L. Optimization of a fuzzy logic controller for PV grid inverter control using S function based PSO. Sol. Energy 2012, 86, 1689–1700. [Google Scholar] [CrossRef]
- Larbes, C.; Cheikh, S.A.; Obeidi, T.; Zerguerras, A. Genetic algorithm optimized fuzzy logic control for the maximum power point tracking in photo voltaic system. J. Renew. Energy 2009, 34, 2093–2100. [Google Scholar] [CrossRef]
- Ganguly, A.; Biswas, P.K.; Sain, C.; Azar, A.T.; Mahlous, A.R.; Ahmed, S. Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach. Sustainability 2023, 15, 11160. [Google Scholar] [CrossRef]
- Hsiao, Y.T.; Chen, C.H. Maximum power tracking for photovoltaic power system. In Proceedings of the 2002 IEEE Industry Applications Conference, 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002. [Google Scholar]
- Esram, T.; Kimball, J.; Krein, P.; Chapman, P.; Midya, P. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans. Power Electron. 2006, 21, 1281–1291. [Google Scholar] [CrossRef]
- Casadei, D.; Grandi, G.; Rossi, C. Single phase single stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Trans. Energy Convers. 2006, 21, 562–568. [Google Scholar] [CrossRef]
- Khaled, A.; Aboubakeur, H.; Mohamed, B.; Nabil, A. A Fast MPPT Control Technique Using PID Controller in a Photovoltaic System. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 24–25 November 2018. [Google Scholar]
- Biswas, P.K.; Ganguly, A.; Sain, C. Comparative Performance Analysis of Hybrid MPPT for Standalone Photovoltaic Boost DC-DC Converter. In Proceedings of the 3rd International Conference on Microelectronics, Computing System, Machine Learning and Internet of Things (MCMI 2022), Online, 17–18 September 2022. [Google Scholar]
- Zainuri, M.A.A.M.; Radzi, M.A.M.; Che Soh, A.; Rahim, N.A. Development of adaptive perturb and observe fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter. IET Renew. Power Gener. 2014, 8, 183–194. [Google Scholar] [CrossRef]
- Feroz Mirza, A.; Mansoor, M.; Ling, Q.; Khan, M.I.; Aldossary, O.M. Advanced variable step size incremental conductance MPPT for a standalone PV system using a GA tuned PI controller. Energies 2020, 16, 4153. [Google Scholar] [CrossRef]
- Badis, A.; Mansouri, M.N.; Boujmil, M.H. A genetic algorithm optimized MPPT controller for a PV system with DC-DC boost converter. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017. [Google Scholar]
- Ali, A.; Almutairi, K.; Malik, M.Z.; Irshad, K.; Tirth, V.; Algarni, S.; Zahir, H.; Islam, S.; Shafiullah; Shukla, N.K. Review of Online and Soft Computing Maximum Power Point Tracking Techniques under NonUniform Solar Irradiation Conditions. Energies 2020, 3, 3256. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, P.; Pachauri, R.K.; Chauhan, Y.K. Performance Analysis of Neural Network and Fuzzy Logic based MPPT Techniques for solar PV system. In Proceedings of the 6th IEEE Power India International Conference (PIICON 2014), Delhi India, 5–7 December 2014; pp. 1–6. [Google Scholar]
- Nasir, A.; Rasool, I.; Sibtain, D.; Kamran, R. Adaptive fractional order PID controller based MPPT for PV connected grid system under changing weather condition. J. Electr. Eng. Technol. 2021, 16, 2599–2610. [Google Scholar] [CrossRef]
- Adhikary, S.; Biswas, P.K.; Sain, C. Comprehensive Review on Charging Solution of Electric Vehicle—An Internet of Things Based Approach. Int. J. Electr. Hybrid Veh. 2023, 15, 40–66. [Google Scholar] [CrossRef]
- Pathak, D.; Sagar, G.; Gaur, P. An application of intelligent non-linear discrete PID controller for MPPT of PV system. Comput. Sci. 2020, 167, 1574–1583. [Google Scholar] [CrossRef]
- Bharathi, M.L.; Basa, R.F.K.; Karthik Ramanathan, S. Fuzzy logic controlled maximum power point tracking for SEPIC converter fed DC drive- A hybrid power generation system. J. Microprocess. Microsyst. 2020. [CrossRef]
- Reddy, K.J.; Sudhakar, N. ANFIS-MPPT control algorithm for a PEMFC system used in electric vehicles. Int. J. Hydrogen Energy 2019, 44, 15355–15369. [Google Scholar] [CrossRef]
- Srinivasan, S.; Tiwari, R.; Krishnamoorthy, M.; Lalitha, M.; Raj, K. Neural network based MPPT control with reconfigured quadratic boost converter for fuel cell application. Int. J. Hydrogen Energy 2020, 46, 6709–6719. [Google Scholar] [CrossRef]
- Satpathy, P.R.; Bhowmik, P.; Babu, T.S.; Sain, C.; Sharma, R.; Alhelou, H.H. Performance and Reliability Improvement of Partially Shaded PV Arrays by One-Time Electrical Reconfiguration. IEEE Access 2022, 10, 46911–46935. [Google Scholar] [CrossRef]
- Mohamed, A.T.; Mahmoud, M.F.; Swief, R.; Said, L.A.; Radwan, A.G. Optimal Fractional order PI with DC-DC converter and PV system. J. Electr. Eng. 2021, 12, 1895–1906. [Google Scholar] [CrossRef]
- Mao, M.; Cui, L.; Zhang, Q.; Guo, K.; Zhou, L.; Huang, H. Classification and Summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Rep. 2020, 6, 1312–1327. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Status of solar wind renewable energy in INDIA. Renew. Sustain. Energy Rev. 2013, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.F.; Parra, R. Renewable energy research progress in Mexico, a review. Rev. Sustain. Energy 2014, 32, 140–153. [Google Scholar] [CrossRef]
- Olalla, C.; Clement, D.; Rodriguez, M.; Maksimovic, D. Architectures and control of sub module integrated DC-DC converters for photovoltaic applications. IEEE Trans. Power Electron. 2013, 28, 2980–2997. [Google Scholar] [CrossRef]
- Wai, R.J.; Lin, C.Y.; Duan, R.Y.; Chang, Y.R. High efficiency DC-DC converter with voltage gain and reduced switch stress. IEEE Trans. Ind. Electron. 2007, 54, 354–364. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Saharia, B.J. A comparative study on converter topologies for maximum power point tracking application in photovoltaic generation. J. Renew. Sustain. Energy 2014, 6, 053140. [Google Scholar] [CrossRef]
- Kwasinski, A. Identification of feasible topologies for multiple input DC-DC converter. IEEE Trans. Power Electron. 2009, 24, 856–861. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Ma, X.; Feng, J. Comparison of conventional DC-DC converter and a family of diode assisted DC-DC converter in renewable energy application. J. Power Electron. 2014, 14, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Taghvaee, M.H.; Radzi, M.A.M.; Moosavain, S.M.; Hizam, H.; HamiruceMarhaban, M. Current and future study of non-isolated DC-DC converters for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 17, 216–227. [Google Scholar] [CrossRef]
- Rashid Muhammad, H. (Ed.) Power Electronics Handbook; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Xu, H.; Kong, L.; Wen, X. Fuel cell power system and high power DC-DC converters. IEEE Trans. Power Electron. 2004, 19, 1250–1255. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, D.; Shen, G.; Chen, M.; Ioinovici, A.; Wu, X. A high step up DC-DC converter under alternating phase shift control for fuel cell power system. IEEE Trans. Power Electron. 2014, 30, 1694–1703. [Google Scholar] [CrossRef]
- York, B.; Yu, W.; Lai, J.-S. An integrated resonant boost converter for photovoltaic applications. IEEE Trans. Power Electron. 2013, 28, 1199–1207. [Google Scholar] [CrossRef]
- Bist, V.; Singh, B. PFC Cuk converter fed BLDC motor drive. IEEE Trans. Power Electron. 2003, 30, 871–887. [Google Scholar]
- Brekken, T.K.; Hapke, H.M.; Stillinger, C.; Prudell, J. Comparison for low power renewable energy and oscillating applications. IEEE Trans. Energy Convers. 2010, 25, 1162–1170. [Google Scholar] [CrossRef]
- Huber, L.; Jovanovic, M. A design approach for server power supplies for networking. In Proceedings of the APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), New Orleans, LA, USA, 6–10 February 2000; pp. 1163–1169. [Google Scholar]
- Ghamrawi, A.; Gaubert, J.P.; Mehdi, D. New control strategy for a quadratic boost converter used in solar energy system. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016. [Google Scholar]
- Revathi, B.S.; Prabhakar, M. Non isolated high gain DC-DC converter topologies for PV applications: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 920–933. [Google Scholar] [CrossRef]
- Koç, Y.; Birbir, Y.; Bodur, H. Non isolated high step up DC/DC converters: An overview. Alex. Eng. J. 2022, 1091, 1132. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.-T.; Wang, Y.-F. Hybrid boost three level DC-DC converter with high voltage gain for photovoltaic generation systems. IEEE Trans. Power Electron. 2013, 28, 3659–3664. [Google Scholar] [CrossRef]
- Rodrigues, J.; Mussa, S.; Barbi, I.; Perin, A. Three level zero voltage switching pulse—Width modulation DC-DC boost converter with active clamping. IET Power Electron. 2010, 3, 345–354. [Google Scholar] [CrossRef]
- Silveira, G.C.; Tofoli, F.L.; Bezerra, L.D.S. A non-isolated DC-DC boost converter with high voltage gain and balanced output voltage. IEEE Trans. Ind. Electron. 2014, 61, 6739–6746. [Google Scholar] [CrossRef]
- Lai, C.M.; Pan, C.T.; Cheng, M.C. High efficiency modular high step up interleaved boost converter for DC micro grid applications. IEEE Trans. Ind. Electron. 2012, 48, 161–171. [Google Scholar]
- Fardoun, A.A.; Ismail, E.H. Ultra highstep up DC-DC converter with reduced switch stress. IEEE Trans. Ind. Appl. 2010, 46, 2025–2034. [Google Scholar]
- Xiong, S.; Tan, S.C. Cascaded high voltage gain bidirectional switched-capacitor DC-DC converters for distributed energy source applications. IEEE Trans. Power Electron. 2016, 32, 1220–1231. [Google Scholar]
- Nouri, T.; Babaei, E.; Hosseini, S.H. A generalized ultra step DC-DC converter for high voltage applications with design considerations. Electr. Power Syst. Res. 2013, 105, 71–84. [Google Scholar]
- Tseng, K.-C.; Huang, C.-C. High step up high efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans. Ind. Electron. 2014, 61, 1311–1319. [Google Scholar]
- Zhao, Y.; Xiang, X.; Li, C.; Gu, Y.; Li, W.; He, X. Single phase high step up converter with voltage multiplier module for renewable energy system. IEEE Trans. Power Electron. 2014, 29, 2807–2816. [Google Scholar]
- Deng, Y.; Rong, Q.; Li, W.; Zhao, Y.; Shi, J.; He, X. Single switch high step up converters with built-in transformer voltage multiplier cell. IEEE Trans. Power Electron. 2012, 27, 3557–3567. [Google Scholar]
- Hu, X.; Gong, C. A high voltage gain DC-DC converter integrating coupled inductor and diode capacitor techniques. IEEE Trans. Power Electron. 2014, 29, 789–800. [Google Scholar]
- Zhao, Y.; Li, W.; He, X. Single phase improved active clamp coupled inductor based converter with extended voltage doubler cell. IEEE Trans. Power Electron. 2012, 27, 2869–2878. [Google Scholar]
- Lin, B.; Dong, J. New zero voltage switching DC-DC converter for renewable energy conversion systems. IET Power Electron. 2012, 5, 393–400. [Google Scholar]
- Yang, L.-S.; Liang, T.-J.; Lee, H.-C.; Chen, J.-F. Novel high step up DC-DC converter with coupled inductor and voltage doubler circuits. IEEE Trans. Ind. Electron. 2010, 58, 4196–4206. [Google Scholar]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step DC-DC converter with coupled inductor and switched capacitor techniques. IEEE Trans. Ind. Electron. 2012, 59, 998–1007. [Google Scholar]
- Amir, A.; Che, H.S.; Amir, A.; El Khateb, A. Transformerless high gain boost and buck-boost converters based on extendable switched capacitor (SC) cell for standalone photovoltaic system. Sol. Energy 2018, 171, 212–222. [Google Scholar]
- Nguyen, M.K.; Duong, T.D.; Lim, Y.C. Switched capacitor based dual-switch high boost DC-DC converter. IEEE Trans. Power Electron. 2013, 60, 1473–1482. [Google Scholar]
- Hsieh, Y.P.; Chen, J.F.; Liang, T.J.; Yang, L.S. Novel high step up DC-DC converter for distributed generation system. IEEE Trans. Ind. Electron. 2013, 60, 1473–1482. [Google Scholar]
- Zhao, Y.; Li, W.; Deng, Y.; He, X. High step up boost converter with passive loseless clamp circuit for non-isolated high step up applications. IET Power Electron. 2011, 4, 851–859. [Google Scholar]
- Qian, W.; Cao, D.; Cintrón-Rivera, J.G.; Gebben, M.; Wey, D.; Peng, F.Z. A switched capacitor DC-DC converter with high voltage gain and reduced component rating and count. IEEE Trans. Ind. Appl. 2012, 48, 1397–1406. [Google Scholar]
- Tang, Y.; Wang, T.; Fu, D. Multicell switched inductor/switched capacitor combined active network converters. IEEE Trans. Power Electron. 2015, 30, 2063–2072. [Google Scholar]
- Berkovich, Y.; Axelrod, B. Switched coupled inductor cell for DC-DC converters with very large conversion ratio. IET Power Electron. 2011, 4, 309–315. [Google Scholar]
- Tang, Y.; Fu, D.; Wang, T.; Xu, Z. Hybrid switched inductor converters for high step up conversions. IEEE Trans. Ind. Electron. 2014, 62, 1480–1490. [Google Scholar]
- Alcazar, Y.J.A.; de Souza Oliveira, D.; Tofoli, F.L.; Torrico-Bascope, R.P. DC-DC non-isolated boost converter based on the three state switching cell and voltage multiplier cells. IEEE Trans. Ind. Electron. 2013, 60, 4438–4449. [Google Scholar]
- Barreto, L.H.S.; Praca, P.P.; Oliveira, D.S.; Silva, R.N. High voltage gain boost converter based on three state communication cell for battery charging using PV panels in a single conversion stage. IEEE Trans. Power Electron. 2013, 29, 150–158. [Google Scholar]
- Chen, Y.-M.; Huang, A.Q.; Yu, X. A high step up three port DC-DC converter for standalone PV/battery power systems. IEEE Trans. Power Electron. 2013, 28, 5049–5062. [Google Scholar]
- Hwu, K.I.; Tu, W.C.; Chuang, C.F. High step up converter based on charge pumps and boost converter. IEEE Trans. Power Electron. 2012, 27, 2482–2494. [Google Scholar]
- Parastar, A.; Gandomkar, A.; Seok, J.-K. High efficiency multilevel flying capacitor DC/DC converter for distributed renewable energy system. IEEE Trans. Ind. Electron. 2015, 62, 7620–7630. [Google Scholar]
- Rosas-Caro, J.C.; Ramirez, J.M.; Garcia-Vite, P.M. A DC-DC multilevel boost converter. IET Power Electron. 2010, 3, 129–137. [Google Scholar]
- Walker, G.R.; Sernia, P.C. Cascaded DC-DC converter connection of photovoltaic modules. In Proceedings of the 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), Cairns, QLD Australia, 23–27 June 2002; pp. 24–29. [Google Scholar]
- Lee, K.J.; Park, B.G.; Kim, R.Y.; Hyun, D.S. Non-isolated ZVT two inductor boost converter with a single resonant inductor for high step up applications. IEEE Trans. Power Electron. 2011, 27, 1966–1973. [Google Scholar]
- Leu, C.-S.; Huang, P.-Y.; Li, M.-H. A novel dual inductor boost converter with ripple cancellation for high voltage gain applications. IEEE Trans. Ind. Electron. 2010, 58, 1268–1273. [Google Scholar]
- Hu, X.; Gong, C. A high gain input parallel output—Series DC/DC converter with dual coupled inductor. IEEE Trans. Power Electron. 2014, 30, 1306–1317. [Google Scholar]
- Li, W.; He, X. High step up soft switching interleaved boost converters with cross-winding coupled inductors and reduced auxiliary switch number. IET Power Electron. 2009, 2, 125–133. [Google Scholar]
- Li, W.; Xiang, X.; Li, C.; Li, W.; He, X. Interleaved high step up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Trans. Power Electron. 2012, 28, 300–313. [Google Scholar]
- Park, S.; Choi, S. Soft-switched CCM boost converters with high voltage gain for high power applications. IEEE Trans. Power Electron. 2010, 25, 1211–1217. [Google Scholar]
- Tseng, K.C.; Huang, C.C.; Shih, W.Y. A high step up converter with a voltage multiplier doubler module for a photovoltaic system. IEEE Trans. Power Electron. 2012, 28, 3047–3057. [Google Scholar]
- Pongratananukul, N.; Kasparis, T. Tool for automated simulation of solar arrays using general purpose simulators. In Proceedings of the IEEE Workshop on computers in Power Electronics, Urbana, IL, USA, 15–18 August 2004; pp. 10–14. [Google Scholar]
- Wang, Y.J.; Hsu, P.C. An investigation of partial shading PV module with different connection configuration of PV cells. Energy 2011, 36, 3069–3078. [Google Scholar]
- Manjunath, M.; Barry, V.R. Optimized reconfigurable PV array based photovoltaic water pumping system. Sol. Energy 2018, 170, 1063–1073. [Google Scholar]
- Iraji, F.; Farjah, E.; Ghanbari, T. Optimization method to find the best switch set topology for reconfiguration of photovoltaic panels. IET Renew. Power Gener. 2019, 12, 3195–3206. [Google Scholar]
- Chaaban, M.A.; El Chaar, L.; Alahmad, M. An adaptive photovoltaic topology to overcome shading effects of PV systems. Int. J. Photo Energy 2015, 2015, 294872. [Google Scholar]
- Harrag, A.; Mesalti, S. Adaptive GA based reconfiguration of photovoltaic array combating partial shading conditions. Neural Comput. Appl. 2016, 30, 1145–1170. [Google Scholar]
- Dhana, L.B.; Rajasekar, N. Dominance square based array reconfiguration scheme for power loss reduction in solar photovoltaic systems. Energy Convers. Manag. 2018, 156, 84–102. [Google Scholar]
- Vijaylekshmy, S.; Bindu, G.R. A novel zig-zag scheme for power enhancement of partially shaded solar arrays. Sol. Energy 2016, 135, 92–102. [Google Scholar]
- Matam, M.; Barry, V.R. Improved performance of dynamic photovoltaic array under repeating shade conditions. Energy Convers. Manag. 2018, 168, 639–650. [Google Scholar]
- Belhachat, F.; Larbes, C. Modeling analysis and comparison of solar photovoltaic array configurations under partial shading condition. Sol. Energy 2015, 120, 399–418. [Google Scholar]
- Bana, S.; Saini, R.P. Experimental investigation on power output of different photovoltaic array reconfiguration under uniform and partial shading scenarios. Energy 2017, 127, 438–453. [Google Scholar]
- Poshtkouhi, S.; Biswas, A.; Trescases, O. DC-DC converter for high granularity, sub-strings MPPT in photovoltaic applications using a virtual parallel connection. In Proceedings of the 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5–9 February 2012; pp. 86–92. [Google Scholar]
- Wu, T.-F.; Yu, T.-H. Unified approach to developing single stage power converters. IEEE Trans. Aerosp. Electron. Sys. 1998, 34, 211–223. [Google Scholar]
- Leyva-Ramos, J.; Ortiz-Lopez, M.G.; Diaz-Saldierna, L.H.; Morales-Saldana, J.A. Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 2009, 2, 605–613. [Google Scholar]
- Ortiz-Lopez, M.G.; Leyva-Ramos, J.; Carbajal-Gutierrez, E.E.; Morales-Saldana, J.A. Modelling and analysis of switch mode cascade converters with a single active switch. IET Power Electron. 2008, 1, 478–487. [Google Scholar]
- De Novaes, Y.R.; Barbi, I.; Rufer, A. A new three level quadratic (T-LQ) DC-DC Converter suitable for fuel cell applications. IEEJ Trans. Ind. Appl. 2008, 128, 426–438. [Google Scholar]
- Wijeratne, D.S.; Moschopoulos, G. Quadratic power conversion for power electronics: Principles and circuits. IEEE Trans. Circuits Syst. 2011, 59, 426–438. [Google Scholar]
- Askarian, I.; Pahlevani, M.; Knight, A.M. Three Port Bidirectional DC/DC Converter for DC Nanogrids. IEEE Trans. Power Electron. 2021, 36, 3046453. [Google Scholar]
- Kircioğlu, O.; Ünlü, M.; Camur, S. Modeling and analysis of DC-DC SEPIC converter with coupled inductor. In Proceedings of the 2016 International Symposium on Industrial Electronics (INDEL), Banja Luka, Bosnia and Herzegovina, 3–5 November 2016. [Google Scholar]
- Alishah, R.S.; Hassani, M.Y.; Hosseini, S.H.; Bertilsson, K.; Babalou, M. Analysis and design of a new extendable SEPIC converter with high voltage gain and reduced components. In Proceedings of the 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 12–17 February 2019. [Google Scholar]
- Aprilianto, R.A.; Subiyanto, S.; Sutikno, T. Modified SEPIC Converter Performance for Grid- Connected PV Systems under Various Conditions. Telkomnika 2018, 16, 2943–2953. [Google Scholar]
- Nathan, K.; Ghosh, S.; Siwakoti, Y.; Long, T. A New DC-DC Converter for Photovoltaic Systems: Coupled Inductors Combined Cuk- SEPIC Converter. IEEE Trans. Energy Convers. 2018, 34, 191–201. [Google Scholar]
- Suryoatmojo, H.; Dilianto, I.; Suwito; Mardiyanto, R.; Setijadi, E.; Riawan, D.C. Design and Analysis of High Gain Modified SEPIC Converter for Photovoltaic Applications. In Proceedings of the IEEE International Conference on Innovative Research and Development (ICIRD), Bangkok, Thailand, 11–12 May 2018. [Google Scholar]
- El Khateb, A.; Rahim, N.A.; Selvaraj, J.; Uddin, M.N. Fuzzy Logic Controller based SEPIC converter for Maximum Power Tracking. IEEE Trans Ind. Appl. 2014, 4, 2349–2358. [Google Scholar]
- Babaei, E.; Mahmoodieh, M.E.S. Calculation of output voltage ripples and design consideration of SEPIC converter. IEEE Trans. Ind. Electron. 2015, 61, 1213–1222. [Google Scholar]
- Taiwo, A.S.; Oricha, J.Y. Modelling of steady state analysis of a SEPIC DC-DC converter based on switching function and harmonic balance technique. J. Power Energy Eng. 2014, 2, 704–711. [Google Scholar]
- Kim, I.-D.; Kim, J.-Y.; Nho, E.-C.; Kim, H.-G. Analysis and design of soft switched PWM SEPIC DC-DC converter. J. Power Electron. 2010, 10, 461–467. [Google Scholar]
Categorization | MPPT | Index of Performance | ||||||
---|---|---|---|---|---|---|---|---|
Complicacy | Tracking Speed | Price | Efficiency | Certainty | Hardware Compatibility | |||
Traditional/ Conventional | Control on the basis of parametric choice | CVT | Poor | Average | Low | <85–90% | Poor | Simple |
OVT | Poor | Average | Low | <85–90% | Poor | Simple | ||
SCT | Poor | Average | Low | <85–90% | Poor | Simple | ||
CS | Poor | Poor | Medium | <85–90% | Poor | Simple | ||
Direct control | P&O | Poor | Superior | Mean | >97% | Average | Simple | |
IC | Medium | Superior | Mean | >98% | Very High | Simple | ||
RC | Medium | Superior | Mean | >96–99% | Very High | Simple | ||
PC | High | Superior | Very High | >98% | Mean | Complicated | ||
MPPT under partial shading condition | PSO | Very High | Rapid | High | >97–99% | Best | Medium | |
GWO | Very High | Average | High | >98% | Average | Simple | ||
PO-PSO | Very High | Rapid | High | >98% | Mean-low | Easy | ||
GA | Very High | Fast | Very High | >98% | High | Simple | ||
FLC-P&O | Very High | Fast | High | 98–99% | Very High | Easy | ||
Intelligent MPPT | FLC(AI) | Very High | Rapid | Very High | >99% | Mean | Simple | |
ANN(AI) | Very High | Rapid | Very High | >99% | Mean | Complicated | ||
SMC(Nonlinear) | Medium | Rapid | Very High | >99% | High | Easy |
Configuration | Strategy | Number of Switches | Gained Parameters | Remarks | |
---|---|---|---|---|---|
Advantages | Limitations | ||||
(a) Simple series | Series [68] | Zero | Zero | Wide application range | Poor efficacy and huge loss of power |
(b) Parallel | Parallel [69] | Zero | Zero | Wide range of application and larger output current | Low efficacy and poor output potential |
(c) Series– parallel | RPV [70] | 6-SPDT, 5-DPST, 4-DPDT | Voltage and intensity of radiation | Wide range of application | Only dual mode of transition of connectivity |
SWS [71] | 6-Switches for each SWS | Current and intensity of radiation | Better speed of convergence | Poor authenticity and high changeability | |
Adaptive [70] | Current and intensity of radiation | Highly compatible | Existence of many switches and complex | ||
IE [72] | NS | Intensity of radiation | Better speed of convergence | High volatility | |
(d) Total cross tie | DS [73] | NS | Intensity of irradiation | Superior efficacy and highly reliable | Complicated |
ZZ [74] | NS | Intensity of irradiation | Wide range of application and superior efficiency | Restricted to 3 × 3 array configuration | |
IE [75] | 24-DPST | Current, voltage, irradiance | Smaller processing and computation duration | Highly complicated and gained only three parameters | |
(e) Bridge link | [76] | NS | Intensity of irradiation | Wide range of application and lower cost | Highly complicated and lower acceptance |
(f) Honey comb | [77] | NS | Intensity of irradiation | Better stability | Complicated and lower acceptance |
Topology Number | References | Range of Potential Gain | Number of Elements | ||
---|---|---|---|---|---|
Smallest | Highest | Smallest | Highest | ||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | [97,98,99,100] [101,102] [103,104,105,106] [107,108,109] [110,111] [112,113] [114,115,116] [117,118,119] [120,121,122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] | 4 [98] 9 [102] 9.45 [103] 7.89 [108] 6 [109] 4.97 [113] 5.76 [114] 8.99 [117] 8 [122] 5 [123] 5 [124] 5.89 [125] 19.5 [126] 12.59 [127] 8 [128] 10.99 [129] 8.23 [130] 9 [131] 4.85 [132] 9.43 [133] | 12 [99] 12 [101] 15.7 [105] 18.97 [109] 17 [111] 11 [112] 16.56 [116] 19.87 [119] 8.34 [120] X X X X X X X 9 9.46 [133] 9.43 [132] 15 [133] | 13 10 11 7 7 9 8 6 13 7 14 7 11 12 13 7 7 13 8 11 | 18 20 22 12 14 16 18 17 19 X X X X X X X 14 18 25 13 |
Topology | Count of Elements | Potential Stress on Switch | Optimum Efficacy | Potential Gain | Frequency (kHz) | Power (W) | ||||
---|---|---|---|---|---|---|---|---|---|---|
L | C | S | D | Sum | ||||||
VMC | 4 | 3 | 2 | 5 | 14 | 97.2% | 15.6 | 50 | 400 | |
Voltage doublers | 2 | 3 | 2 | 4 | 11 | 93% | 15.83 | 100 | 500 | |
Cascading techniques | 2 | 2 | 3 | 4 | 11 | N/A | 95.6% | 20 | 45.5 | 280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganguly, A.; Biswas, P.K.; Sain, C.; Ustun, T.S. Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey. Technologies 2023, 11, 102. https://doi.org/10.3390/technologies11040102
Ganguly A, Biswas PK, Sain C, Ustun TS. Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey. Technologies. 2023; 11(4):102. https://doi.org/10.3390/technologies11040102
Chicago/Turabian StyleGanguly, Anupama, Pabitra Kumar Biswas, Chiranjit Sain, and Taha Selim Ustun. 2023. "Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey" Technologies 11, no. 4: 102. https://doi.org/10.3390/technologies11040102
APA StyleGanguly, A., Biswas, P. K., Sain, C., & Ustun, T. S. (2023). Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey. Technologies, 11(4), 102. https://doi.org/10.3390/technologies11040102