Improvement of β-SiC Synthesis Technology on Silicon Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples for the Experiment
2.2. Electrolytes, Precursors, and Equipment
2.3. Experiment Steps
- Stage 1—Formation of the porous Si layer;
- Stage 2—Removal of reaction products from the sample surface;
- Stage 3—Formation of the SiC layer;
- Stage 4—Post-processing of the samples.
2.3.1. Stage 1. Electrochemical Etching in Acid Solutions
2.3.2. Stage 2. Removal of Moisture Residues and Reaction Products from the Sample Surface
2.3.3. Stage 3. Thermal Deposition and SiC Film Formation
2.3.4. Stage 4. Post-Processing of the β-SiC/Por-Si/Mono-Si Heterostructure
2.4. Characterization
3. Results
3.1. Subsection
3.2. EDX Analysis
3.3. XRD Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Vaqueiro Contreras, M.; Ciesla, A.; Hamer, P.; Hallam, B.; Abbott, M.; Chan, C. Progress in the understanding of light-and elevated temperature-induced degradation in silicon solar cells: A review. Prog. Photovolt. Res. Appl. 2021, 29, 1180–1201. [Google Scholar] [CrossRef]
- Richter, A.; Müller, R.; Benick, J.; Feldmann, F.; Steinhauser, B.; Reichel, C.; Glunz, S.W. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy 2021, 6, 429–438. [Google Scholar] [CrossRef]
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef]
- Fell, A.; McIntosh, K.R.; Altermatt, P.P.; Janssen, G.J.; Stangl, R.; Ho-Baillie, A.; Abbott, M.D. Input parameters for the simulation of silicon solar cells in 2014. IEEE J. Photovolt. 2015, 5, 1250–1263. [Google Scholar] [CrossRef]
- Bosio, A.; Pasini, S.; Romeo, N. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020, 10, 344. [Google Scholar] [CrossRef]
- Çetinkaya, Ç.; Çokduygulular, E.; Kınacı, B.; Güzelçimen, F.; Özen, Y.; Sönmez, N.A.; Özçelik, S. Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering. Sci. Rep. 2022, 12, 11245. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I. Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition. Nanomater. Nanotechnol. 2022, 12. [Google Scholar] [CrossRef]
- Oshima, R.; Ogura, A.; Shoji, Y.; Makita, K.; Ubukata, A.; Koseki, S.; Imaizumi, M.; Sugaya, T. Ultra-High-Speed Growth of GaAs Solar Cells by Triple-Chamber Hydride Vapor Phase Epitaxy. Crystals 2023, 13, 370. [Google Scholar] [CrossRef]
- Suchikova, Y. Provision of environmental safety through the use of porous semiconductors for solar energy sector. East.-Eur. J. Enterp. Technol. 2016, 6, 26–33. [Google Scholar] [CrossRef]
- Yana, S. Porous indium phosphide: Preparation and properties. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques, 1st ed.; Springer: Cham, Switzerland, 2015; pp. 283–306. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Moskina, A.; Popov, A. Characterization of CdxTeyOz/CdS/ZnO Hetero-structures Synthesized by the SILAR Method. Coatings 2023, 13, 639. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Karipbaev, Z.T.; Pankratov, V.; Popov, A.I. Study of the structural and morphological characteristics of the CdxTeyOz nanocomposite obtained on the surface of the CdS/ZnO heterostructure by the SILAR method. Appl. Phys. A 2023, 129, 499. [Google Scholar] [CrossRef]
- Shoji, Y.; Tamaki, R.; Okada, Y. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells. Nanomaterials 2021, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Abdikadirova, A.A.; Kenzhina, I.; Popov, A.I. Electrochemical Growth and Structural Study of the AlxGa1−xAs Nanowhisker Layer on the GaAs Surface. J. Manuf. Mater. Process. 2023, 7, 153. [Google Scholar] [CrossRef]
- Sergeyev, D.; Zhanturina, N.; Aizharikov, A.; Popov, A.I. Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the CuZnSnS Absorber of Model Solar Cells. Latv. J. Phys. Tech. Sci. 2021, 58, 13–23. [Google Scholar] [CrossRef]
- Nugroho, H.S.; Refantero, G.; Septiani, N.L.W.; Iqbal, M.; Marno, S.; Abdullah, H.; Prima, E.C.; Nugraha; Yuliarto, B. A progress review on the modification of CZTS(e)-based thin-film solar cells. J. Ind. Eng. Chem. 2022, 105, 83–110. [Google Scholar] [CrossRef]
- Krotkus, A.; Nevinskas, I.; Norkus, R. Semiconductor Characterization by Terahertz Excitation Spectroscopy. Materials 2023, 16, 2859. [Google Scholar] [CrossRef]
- Obaid, W.O.; Hashim, A. Synthesis and Augmented Optical Properties of PC/SiC/TaC Hybrid Nanostructures for Potential and Photonics Fields. Silicon 2022, 14, 11199–11207. [Google Scholar] [CrossRef]
- Vambol, S.O.; Bohdanov, I.T.; Vambol, V.V.; Nestorenko, T.P.; Onyschenko, S.V. Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide. J. Nano-Electron. Phys. 2017, 9, 06016. [Google Scholar] [CrossRef]
- Ahmed, H.; Hashim, A. Tuning the spectroscopic and electronic characteristics of ZnS/SiC nanostructures doped organic material for optical and nanoelectronics fields. Silicon 2023, 15, 2339–2348. [Google Scholar] [CrossRef]
- Anjum, S.; Gonzalez, P.E.; Atwater, H.A. Planar and Nanowire InP Thin Solar Cells for Ultralight Space Power Applications. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5–10 June 2022; pp. 1083–1085. [Google Scholar] [CrossRef]
- Yan, G.; Wang, J.L.; Liu, J.; Liu, Y.Y.; Wu, R.; Wang, R. Electroluminescence analysis of VOC degradation of individual subcell in GaInP/GaAs/Ge space solar cells irradiated by 1.0 MeV electrons. J. Lumin. 2020, 219, 116905. [Google Scholar] [CrossRef]
- Köhler, M.; Pomaska, M.; Procel, P.; Santbergen, R.; Zamchiy, A.; Macco, B.; Lambertz, A.; Duan, W.; Cao, P.; Klingebiel, B.; et al. A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 2021, 6, 529–537. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, Y.; Tan, S.; Liu, M.; Wan, Y. Simulation of Amorphous Silicon Carbide Photonic Crystal Absorption Layer for Solar Cells. Crystals 2022, 12, 665. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Zhang, X.-Y.; Zhao, M.J.; Lin, H.-J.; Zhu, W.-Z.; Lien, S.-Y. Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals 2019, 9, 402. [Google Scholar] [CrossRef]
- Merkininkaite, G.; Gailevicius, D.; Staisiunas, L.; Ezerskyte, E.; Vargalis, R.; Malinauskas, M.; Sakirzanovas, S. Additive Manufacturing of SiOC, SiC, and Si3N4 Ceramic 3D Microstructures. Adv. Eng. Mater. 2023, 25, 2300639. [Google Scholar] [CrossRef]
- Hashim, A.; Abbas, M.H.; Al-Aaraji NA, H.; Hadi, A. Controlling the morphological, optical and dielectric characteristics of PS/SiC/CeO2 nanostructures for nanoelectronics and optics fields. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1–9. [Google Scholar] [CrossRef]
- Gaibnazarov, B.B.; Imanova, G.; Khozhiev, S.T.; Kosimov, I.O.; Khudaikulov, I.K.; Kuchkanov, S.K.; Bekpulatov, I.R. Changes in the Structure and Properties of Silicon Carbide under Gamma Irradiation. Integr. Ferroelectr. 2023, 237, 208–215. [Google Scholar] [CrossRef]
- Meteab, M.H.; Hashim, A.; Rabee, B.H. Synthesis and tailoring the morphological, optical, electronic and photodegradation characteristics of PS–PC/MnO2–SiC quaternary nanostructures. Opt. Quantum Electron. 2023, 55, 187. [Google Scholar] [CrossRef]
- Kim, V.V.; Konda, S.R.; Yu, W.; Li, W.; Ganeev, R.A. Harmonics Generation in the Laser-Induced Plasmas of Metal and Semiconductor Carbide Nanoparticles. Nanomaterials 2022, 12, 4228. [Google Scholar] [CrossRef]
- Hashim, A.; Abbas, M.H.; Al-Aaraji NA, H.; Hadi, A. Facile fabrication and developing the structural, optical and electrical properties of SiC/Y2O3 nanostructures doped PMMA for optics and potential nanodevices. Silicon 2023, 15, 1283–1290. [Google Scholar] [CrossRef]
- Scalise, E.; Zimbone, M.; Marzegalli, A. Impact of Inversion Domain Boundaries on the Electronic Properties of 3C-SiC. Phys. Status Solidi B 2022, 259, 2200093. [Google Scholar] [CrossRef]
- Kohn, V.G.; Argunova, T.S. Near-Field Phase-Contrast Imaging of Micropores in Silicon Carbide Crystals with Synchrotron Radiation. Phys. Status Solidi B 2022, 259, 2100651. [Google Scholar] [CrossRef]
- Sameera, J.N.; Islam, M.A.; Islam, S.; Hossain, T.; Sobayel, M.; Akhtaruzzaman; Amin, N.; Rashid, M.J. Cubic Silicon Carbide (3C–SiC) as a buffer layer for high efficiency and highly stable CdTe solar cell. Opt. Mater. 2021, 123, 111911. [Google Scholar] [CrossRef]
- Lebedev, A.S.; Suzdal’tsev, A.V.; Anfilogov, V.N.; Farlenkov, A.S.; Porotnikova, N.M.; Vovkotrub, E.G.; Akashev, L.A. Carbothermal Synthesis, Properties, and Structure of Ultrafine SiC Fibers. Inorg. Mater. 2020, 56, 20–27. [Google Scholar] [CrossRef]
- Capan, I. 4H-SiC Schottky Barrier Diodes as Radiation Detectors: A Review. Electronics 2022, 11, 532. [Google Scholar] [CrossRef]
- Li, G.; Xu, M.; Zou, D.; Cui, Y.; Zhong, Y.; Cui, P.; Cheong, K.Y.; Xia, J.; Nie, H.; Li, S.; et al. Fabrication of Ohmic Contact on N-Type SiC by Laser Annealed Process: A Review. Crystals 2023, 13, 1106. [Google Scholar] [CrossRef]
- Tahani, M.; Postek, E.; Motevalizadeh, L.; Sadowski, T. Effect of Vacancy Defect Content on the Interdiffusion of Cubic and Hexagonal SiC/Al Interfaces: A Molecular Dynamics Study. Molecules 2023, 28, 744. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Haasmann, D.; Moghadam, H.A.; Dimitrijev, S. Electrically Active Defects in SiC Power MOSFETs. Energies 2023, 16, 1771. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Reitano, R.; Sangregorio, E.; Calcagno, L.; Trotta, A.; Parisi, M.; Meda, L.; La Via, F. Effect of the Oxidation Process on Carrier Lifetime and on SF Defects of 4H SiC Thick Epilayer for Detection Applications. Micromachines 2022, 13, 1042. [Google Scholar] [CrossRef]
- Mukesh, N.; Márkus, B.G.; Jegenyes, N.; Bortel, G.; Bezerra, S.M.; Simon, F.; Beke, D.; Gali, A. Formation of Paramagnetic Defects in the Synthesis of Silicon Carbide. Micromachines 2023, 14, 1517. [Google Scholar] [CrossRef]
- Jorudas, J.; Šimukovič, A.; Dub, M.; Sakowicz, M.; Prystawko, P.; Indrišiūnas, S.; Kovalevskij, V.; Rumyantsev, S.; Knap, W.; Kašalynas, I. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics. Micromachines 2020, 11, 1131. [Google Scholar] [CrossRef]
- Adamov, R.B.; Pashnev, D.; Shalygin, V.A.; Moldavskaya, M.D.; Vinnichenko, M.Y.; Janonis, V.; Jorudas, J.; Tumėnas, S.; Prystawko, P.; Krysko, M.; et al. Optical Performance of Two Dimensional Electron Gas and GaN:C Buffer Layers in AlGaN/AlN/GaN Heterostructures on SiC Substrate. Appl. Sci. 2021, 11, 6053. [Google Scholar] [CrossRef]
- Triani, R.M.; Neto, J.B.T.D.R.; De Oliveira, P.G.B.; Rêgo, G.C.; Neto, A.L.; Casteletti, L.C. In-Situ Production of Metal Matrix Composites Layers by TIG Surface Alloying to Improve Wear Resistance of Ductile Cast Iron Using a Buffer-Layer and Post Weld Heat Treatment. Coatings 2023, 13, 1137. [Google Scholar] [CrossRef]
- Lenshin, A.; Seredin, P.; Goloshchapov, D.; Radam, A.O.; Mizerov, A. MicroRaman Study of Nanostructured Ultra-Thin AlGaN/GaN Thin Films Grown on Hybrid Compliant SiC/Por-Si Substrates. Coatings 2022, 12, 626. [Google Scholar] [CrossRef]
- Amador-Mendez, N.; Mathieu-Pennober, T.; Vézian, S.; Chauvat, M.P.; Morales, M.; Ruterana, P.; Babichev, A.; Bayle, F.; Julien, F.H.; Bouchoule, S.; et al. Porous nitride light-emitting diodes. ACS Photonics 2022, 9, 1256–1263. [Google Scholar] [CrossRef]
- Faltakh, H.; Bourguiga, R.; Ben Rabha, M.; Bessais, B. Simulation and Optimization of the Performance of Multicrystalline Silicon Solar Cell Using Porous Silicon Antireflection Coating Layer. Superlattices Microstruct. 2014, 72, 283–295. [Google Scholar] [CrossRef]
- Ben Rabha, M.; Mohamed, S.B.; Dimassi, W.; Gaidi, M.; Ezzaouia, H.; Bessais, B. Reduction of Absorption Loss in Multicrystalline Silicon via Combination of Mechanical Grooving and Porous Silicon. Phys. Status Solidi C 2011, 8, 883–886. [Google Scholar] [CrossRef]
- Nafie, N.; Lachiheb, M.A.; Rabha, M.B.; Dimassi, W.; Bouaïcha, M. Effect of the Doping Concentration on the Properties of Silicon Nanowires. Phys. E Low-Dimens. Syst. Nanostruc. 2014, 56, 427–430. [Google Scholar] [CrossRef]
- Lo Nigro, R.; Fiorenza, P.; Greco, G.; Schilirò, E.; Roccaforte, F. Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices. Materials 2022, 15, 830. [Google Scholar] [CrossRef]
- Fiorenza, P.; Giannazzo, F.; Roccaforte, F. Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review. Energies 2019, 12, 2310. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, T.; Fan, J.; Maddi, H.L.R.; White, M.H.; Agarwal, A.K. Effects of JFET Region Design and Gate Oxide Thickness on the Static and Dynamic Performance of 650 V SiC Planar Power MOSFETs. Materials 2022, 15, 5995. [Google Scholar] [CrossRef]
- Brzozowski, E.; Kaminski, M.; Taube, A.; Sadowski, O.; Krol, K.; Guziewicz, M. Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres. Materials 2023, 16, 4381. [Google Scholar] [CrossRef] [PubMed]
- Sultan, N.M.; Albarody, T.M.B.; Obodo, K.O.; Baharom, M.B. Effect of Mn+2 Doping and Vacancy on the Ferromagnetic Cubic 3C-SiC Structure Using First Principles Calculations. Crystals 2023, 13, 348. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. Anomalous Properties of the Dislocation-Free Interface between Si(111) Substrate and 3C-SiC(111) Epitaxial Layer. Materials 2021, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, V.; Zielinski, M.; La Via, F. Impact of Doping on Cross-Sectional Stress Assessment of 3C-SiC/Si Heteroepitaxy. Materials 2023, 16, 3824. [Google Scholar] [CrossRef] [PubMed]
- Zimbone, M.; Zielinski, M.; Bongiorno, C.; Calabretta, C.; Anzalone, R.; Scalese, S.; Fisicaro, G.; La Magna, A.; Mancarella, F.; La Via, F. 3C-SiC Growth on Inverted Silicon Pyramids Patterned Substrate. Materials 2019, 12, 3407. [Google Scholar] [CrossRef]
- Zhang, R.; Zou, C.; Wei, Z.; Wang, H.; Liu, C. Nano-Phase and SiC–Si Spherical Microstructure in SiC/Al-50Si Composites Solidified under High Pressure. Materials 2023, 16, 4283. [Google Scholar] [CrossRef]
- Suchikova, Y.O.; Kovachov, S.S.; Bardus, I.O.; Lazarenko, A.S.; Bohdanov, I.T. Formation of β-SiC on por-Si/mono-Si Surface According to Stranski—Krastanow Mechanism. Him. Fiz. Tehnol. Poverhni 2022, 13, 447–454. [Google Scholar] [CrossRef]
- Lobanok, M.V.; Mukhammad, A.I.; Gaiduk, P.I. Structural and Optical Properties of SiC/Si Heterostructures Obtained Using Rapid Vacuum-Thermal Carbidization of Silicon. J. Appl. Spectrosc. 2022, 89, 256–260. [Google Scholar] [CrossRef]
- Kulych, V.G.; Fesenko, I.P.; Kovtiukh, M.O.; Tkach, V.M.; Kaidash, O.M.; Kuzmenko, Y.F.; Chasnyk, V.I.; Ivzhenko, V.V. Microstructure and Thermal Conductivity of Reaction-Sintered SiC. J. Superhard Mater. 2023, 45, 158–160. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, G.; Cai, X.; Dou, B.; Wang, Z.; Liu, Y.; Wei, S.H. General Model for Defect Dynamics in Ionizing-Irradiated SiO2-Si Structures. Small 2022, 18, 2107516. [Google Scholar] [CrossRef]
- Bandarenka, H.; Redko, S.; Nenzi, P.; Balucani, M. Optimization of chemical displacement deposition of copper on porous silicon. J. Nanosci. Nanotechnol. 2012, 12, 8725–8731. [Google Scholar] [CrossRef] [PubMed]
- Dolgyi, A.; Bandarenka, H.; Prischepa, S.; Yanushkevich, K.; Nenzi, P.; Balucani, M.; Bondarenko, V. Electrochemical deposition of Ni into mesoporous silicon. ECS Trans. 2012, 41, 111. [Google Scholar] [CrossRef]
- Artsemyeva, K.; Dolgiy, A.; Bandarenka, H.; Panarin, A.; Khodasevich, I.; Terekhov, S.; Bondarenko, V. Fabrication of SERS-active substrates by electrochemical and electroless deposition of metals in macroporous silicon. ECS Trans. 2013, 53, 85. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Z.; Jung, G.S.; Song, Q.; Hempel, M.; Palacios, T.; Kong, J. Frank-van der Merwe Growth in Bilayer Graphene. Matter 2021, 4, 3339–3353. [Google Scholar] [CrossRef]
- Zhai, P.; Kou, S.; Peng, Y.; Shi, Y.; Jiang, H.; Li, G. Change Volmer–Weber to Frank–van der Merwe Growth Model of Epitaxial BiVO4 Film. J. Phys. D Appl. Phys. 2022, 55, 324004. [Google Scholar] [CrossRef]
- Gastellóu, E.; García, R.; Herrera, A.M.; Ramos, A.; García, G.; Hirata, G.A.; Ramírez, Y.D. Optical and Structural Analysis of GaN Microneedle Crystals Obtained via GaAs Substrates Decomposition and their Possible Growth Model Using the Volmer–Weber Mechanism. Phys. Status Solidi B 2023, 260, 2200201. [Google Scholar] [CrossRef]
- Qiu, X.P.; Liu, X.; Jiang, S.M. Growth Mechanism for Zinc Coatings Deposited by Vacuum Thermal Evaporation. J. Iron Steel Res. Int. 2021, 28, 1047–1053. [Google Scholar] [CrossRef]
- Dirko, V.V.; Lozovoy, K.A.; Kokhanenko, A.P.; Kukenov, O.I.; Korotaev, A.G.; Voitsekhovskii, A.V. Peculiarities of the 7 × 7 to 5 × 5 Superstructure Transition during Epitaxial Growth of Germanium on Silicon (111) Surface. Nanomaterials 2023, 13, 231. [Google Scholar] [CrossRef]
- Penha, F.M.; Andrade, F.R.D.; Lanzotti, A.S.; Moreira Junior, P.F.; Zago, G.P.; Seckler, M.M. In Situ Observation of Epitaxial Growth during Evaporative Simultaneous Crystallization from Aqueous Electrolytes in Droplets. Crystals 2021, 11, 1122. [Google Scholar] [CrossRef]
- Sun, X.W.; Huang, H.C.; Kwok, H.S. On the initial growth of indium tin oxide on glass. Appl. Phys. Lett. 1996, 68, 2663–2665. [Google Scholar] [CrossRef]
- Floro, J.A.; Hearne, S.J.; Hunter, J.A.; Seel, S.C.; Thompson, C.V. The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films. J. Appl. Phys. 2001, 89, 4886–4897. [Google Scholar] [CrossRef]
- Pan, L.; Lew, K.-K.; Redwing, J.M.; Dickey, E.C. Stranski-Krastanow growth of germanium on silicon nanowires. Nano Lett. 2005, 5, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
№ | Purpose | Electrolyte | Potential, V | Time, min |
---|---|---|---|---|
1.1 | Removal of oxide | 5% HCl | 2 | 3 |
1.2 | Formation of a porous layer | 50% HF | 5 | 7 |
1.3 | Removal of reaction products from the surface | H2O | 0 | 2 |
№ | Time, min | Temperature, °C |
---|---|---|
2.1 | 180 | 150 |
2.2 | 60 | 300 |
2.3 | 60 | 400 |
№ | Time, min | Temperature, °C | Pressure in the Reaction Chamber, P, Pa |
---|---|---|---|
3.1 | 1 | 50→900 1 | 1 × 10−2 |
3.2 | 1 | 50→900 | 1 × 10−2 |
№ | Method | Reagent | Time, min | Temperature, °C |
---|---|---|---|---|
4.1 | Chemical etching | 2% HCl | 20 | 20 |
4.2 | Thermal annealing | N2 | 90 | 150 |
№ | 2θ, ° | hkl | Crystal | Crystal System |
---|---|---|---|---|
1 | 28.5 | (111) | Si | Cubic |
2 | 35.6 | (111) | Si | Cubic |
3 | 60.1 | (220) | SiC | Cubic |
Parameter | Si | SiC |
---|---|---|
Crystal system | Cubic | Cubic |
Space group name | P1 | F-43m |
Lattice parameters, Å | a = 4.348 | a = 5.6608 |
Unit-cell volume, 10−6 pm−3 | 82.20 | 181.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Popov, A.I. Improvement of β-SiC Synthesis Technology on Silicon Substrate. Technologies 2023, 11, 152. https://doi.org/10.3390/technologies11060152
Suchikova Y, Kovachov S, Bohdanov I, Kozlovskiy AL, Zdorovets MV, Popov AI. Improvement of β-SiC Synthesis Technology on Silicon Substrate. Technologies. 2023; 11(6):152. https://doi.org/10.3390/technologies11060152
Chicago/Turabian StyleSuchikova, Yana, Sergii Kovachov, Ihor Bohdanov, Artem L. Kozlovskiy, Maxim V. Zdorovets, and Anatoli I. Popov. 2023. "Improvement of β-SiC Synthesis Technology on Silicon Substrate" Technologies 11, no. 6: 152. https://doi.org/10.3390/technologies11060152
APA StyleSuchikova, Y., Kovachov, S., Bohdanov, I., Kozlovskiy, A. L., Zdorovets, M. V., & Popov, A. I. (2023). Improvement of β-SiC Synthesis Technology on Silicon Substrate. Technologies, 11(6), 152. https://doi.org/10.3390/technologies11060152