Agent-Based Trust and Reputation Model in Smart IoT Environments
Abstract
:1. Introduction
2. Related Work
2.1. Trust and Reputation in IoT
2.2. Trust and Reputation in MAS
2.3. Agent-Based Trust and Reputation in IoT
3. IoT-CADM Design
3.1. IoT-CADM Trust Evaluation and Selection Model (IoT-TESM)
3.2. The Auto-Scale Weights (ASW)
3.3. Detecting Dishonest Agents Using Principal Component Analysis (PCA)
3.4. IoT-CADM Environment
4. Experimental Evaluation
4.1. Experimental Setup
- Starts the evaluation and selection process if there is at least one or more potential provider and responses have been received.
- Starts the evaluation and selection process if there is at least one or more potential provider and responses have been received after a certain waiting time.
- If no potential providers are available, the agent starts the Reordering process. This process may be repeated many times (ReO) for a particular service SRi. A waiting time is set before repeating the reordering process. The waiting time can be set to a constant value (Xct) or by multiplying the ReO value by Xct.
4.2. Performance Measures
- Trustworthiness: the trust and reputation score of all trustees or other peers in the environments. A high trust score represents a higher level of trustworthiness.
- Cash utility (): the total cash gained by the individual agent and the model is determined by the amount of cash (won or lost) after a fixed number of rounds. Equation (19) is used to calculate the cash utility, (where PoT represents positive transactions, NgT denotes negative transactions, n is the total number of transactions, Tc is the completion time, Ts is the service starting time and Te is the expected agreed time to complete the service).
4.3. Results
4.3.1. Honest Environment (0% Misbehaving Agents)
4.3.2. Dishonest Environment (0–75% Misbehaving Agents)
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maddar, H.; Kammoun, W.; Youssef, H. Effective distributed trust management model for Internet of Things. Procedia Comput. Sci. 2018, 126, 321–334. [Google Scholar] [CrossRef]
- Abdul-Rahman, A.; Hailes, S. Supporting trust in virtual communities. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2000. [Google Scholar]
- Caminha, J.; Perkusich, A.; Perkusich, M. A Smart Trust Management Method to Detect On-Off Attacks in the Internet of Things. Secur. Commun. Netw. 2018, 2018, 6063456. [Google Scholar] [CrossRef]
- Guo, J.; Chen, I.-R.; Tsai, J.J.P. A survey of trust computation models for service management in internet of things systems. Comput. Commun. 2017, 97, 1–14. [Google Scholar] [CrossRef]
- Alshehri, M.D.; Hussain, F.K.; Hussain, O.K. Clustering-Driven Intelligent Trust Management Methodology for the Internet of Things (CITM-IoT). Mob. Netw. Appl. 2018, 23, 419–431. [Google Scholar] [CrossRef]
- Sun, G.; Li, J.; Dai, J.; Song, Z.; Lang, F. Feature selection for IoT based on maximal information coefficient. Futur. Gener. Comput. Syst. 2018, 89, 606–616. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, Z.; Tao, W.; Xue, B.; Lee, C. An Efficient Trust Evaluation Scheme for Node Behavior Detection in the Internet of Things. Wirel. Pers. Commun. 2017, 93, 571–587. [Google Scholar] [CrossRef]
- Kowshalya, A.M.; Valarmathi, M.L. Trust Management in the Social Internet of Things. Wirel. Pers. Commun. 2017, 96, 2681–2691. [Google Scholar] [CrossRef]
- Ben Saied, Y.; Olivereau, A.; Zeghlache, D.; Laurent, M. Trust management system design for the Internet of Things: A context-aware and multi-service approach. Comput. Secur. 2013, 39, 351–365. [Google Scholar] [CrossRef]
- Copigneaux, B. Semi-autonomous, context-aware, agent using behaviour modelling and reputation systems to authorize data operation in the Internet of Things. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014; pp. 411–416. [Google Scholar]
- Sabater, J. EVALUATING THE ReGreT SYSTEM. Appl. Artif. Intell. 2004, 18, 797–813. [Google Scholar] [CrossRef]
- Majd, E.; Balakrishnan, V. A reputation-oriented trust model for multi-agent environments. Ind. Manag. Data Syst. 2016, 116, 1380–1396. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. (Eds.) Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Jøsang, A.; Ismail, R.; Boyd, C. A survey of trust and reputation systems for online service provision. Decis. Support Syst. 2007, 43, 618–644. [Google Scholar] [CrossRef]
- Ahmed, A.I.A.; Ab Hamid, S.H.; Gani, A.; Khan, S.; Khan, M.K. Trust and reputation for Internet of Things: Fundamentals, taxonomy, and open research challenges. J. Netw. Comput. Appl. 2019, 145, 102409. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.-H.; Kuo, Y.-H. Reputation evaluation for choosing a trustworthy counterparty in C2C e-commerce. Electron. Commer. Res. Appl. 2011, 10, 428–436. [Google Scholar] [CrossRef]
- Khosravifar, B.; Bentahar, J.; Gomrokchi, M.; Alam, R. CRM: An efficient trust and reputation model for agent computing. Knowl.-Based Syst. 2012, 30, 1–16. [Google Scholar] [CrossRef]
- Ruan, Y.; Durresi, A.; Uslu, S. Trust Assessment for Internet of Things in Multi-access Edge Computing. In Proceedings of the 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), Krakow, Poland, 16–18 May 2018. [Google Scholar]
- Guo, J.; Wang, H.; Liu, W.; Huang, G.; Gui, J.; Zhang, S. A lightweight verifiable trust based data collection approach for sensor–cloud systems. J. Syst. Arch. 2021, 119, 102219. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, M.; Yang, C.-N.; Fu, Z.; Sun, X.; Wu, Q.J. Blockchain-based decentralized reputation system in E-commerce environment. Futur. Gener. Comput. Syst. 2021, 124, 155–167. [Google Scholar] [CrossRef]
- Alhandi, S.A.; Kamaludin, H.; Alduais, N.A.M. Trust Evaluation Model in IoT Environment: A Comprehensive Survey. IEEE Access 2023, 11, 11165–11182. [Google Scholar] [CrossRef]
- Ardagna, C.A.; Damiani, E.; De Capitani di Vimercati, S.; Samarati, P. Trust Management. In Security, Privacy, and Trust in Modern Data Management; Petković, M., Jonker, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 103–117. [Google Scholar]
- Shayesteh, B.; Hakami, V.; Akbari, A. A trust management scheme for IoT-enabled environmental health/accessibility monitoring services. Int. J. Inf. Secur. 2020, 19, 93–110. [Google Scholar] [CrossRef]
- Lenard, T.; Collen, A.; Benyahya, M.; Nijdam, N.A.; Genge, B. Exploring Trust Modeling and Management Techniques in the Context of Distributed Wireless Networks: A Literature Review. IEEE Access 2023, 11, 106803–106832. [Google Scholar] [CrossRef]
- Fortino, G.; Fotia, L.; Messina, F.; Rosaci, D.; Sarne, G.M.L. Trust and Reputation in the Internet of Things: State-of-the-Art and Research Challenges. IEEE Access 2020, 8, 60117–60125. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, P.; Vasilakos, A.V. A survey on trust management for Internet of Things. J. Netw. Comput. Appl. 2014, 42, 120–134. [Google Scholar] [CrossRef]
- Chen, J.; Tian, Z.; Cui, X.; Yin, L.; Wang, X. Trust architecture and reputation evaluation for internet of things. J. Ambient. Intell. Humaniz. Comput. 2018, 10, 3099–3107. [Google Scholar] [CrossRef]
- Baharloo, N.; Bentahar, J.; Alwhishi, G.; Drawel, N.; Pedrycz, W. Verifying trust over IoT-ad hoc network-based applications under uncertainty. Ad. Hoc. Netw. 2024, 154, 103380. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, F.; Zhang, J.; Lu, T.; Shen, J.; Shu, W. An adaptive trust model based on recommendation filtering algorithm for the Internet of Things systems. Comput. Netw. 2021, 190, 107952. [Google Scholar] [CrossRef]
- Saidi, A. Trust evaluation method for Wireless Sensor Networks based on behavioral similarity and similarity coefficient. In Proceedings of the 2021 International Conference on Networking and Advanced Systems (ICNAS), Annaba, Algeria, 27–28 October 2021; pp. 1–6. [Google Scholar]
- Narang, N.; Kar, S. A hybrid trust management framework for a multi-service social IoT network. Comput. Commun. 2021, 171, 61–79. [Google Scholar] [CrossRef]
- Latif, R. ConTrust: A Novel Context-Dependent Trust Management Model in Social Internet of Things. IEEE Access 2022, 10, 46526–46537. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, D.; Ning, Z. A decentralized and reliable trust measurement for edge computing enabled Internet of Things. Concurr. Comput. Pract. Exp. 2022, 34, e7238. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Jia, W.; Liu, A.; Xie, M. MTES: An Intelligent Trust Evaluation Scheme in Sensor-Cloud-Enabled Industrial Internet of Things. IEEE Trans. Ind. Inform. 2019, 16, 2054–2062. [Google Scholar] [CrossRef]
- Tong, Z.; Ye, F.; Mei, J.; Liu, B.; Li, K. A novel task offloading algorithm based on an integrated trust mechanism in mobile edge computing. J. Parallel Distrib. Comput. 2022, 169, 185–198. [Google Scholar] [CrossRef]
- Altaf, A.; Abbas, H.; Iqbal, F.; Khan, F.A.; Rubab, S.; Derhab, A. Context-oriented trust computation model for industrial Internet of Things. Comput. Electr. Eng. 2021, 92, 107123. [Google Scholar] [CrossRef]
- Din, I.U.; Awan, K.A.; Almogren, A.; Kim, B.-S. ShareTrust: Centralized trust management mechanism for trustworthy resource sharing in industrial Internet of Things. Comput. Electr. Eng. 2022, 100, 108013. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zeng, Z.; Li, X.; Wang, T.; Liu, X. A verifiable trust evaluation mechanism for ultra-reliable applications in 5G and beyond networks. Comput. Stand. Interfaces 2021, 77, 103519. [Google Scholar] [CrossRef]
- Bhor, H.N.; Kalla, M. TRUST-based features for detecting the intruders in the Internet of Things network using deep learning. Comput. Intell. 2021, 38, 438–462. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Rodrigues, J.J. AutoTrust: A privacy-enhanced trust-based intrusion detection approach for internet of smart things. Futur. Gener. Comput. Syst. 2022, 137, 288–301. [Google Scholar] [CrossRef]
- Magdich, R.; Jemal, H.; Ben Ayed, M. A resilient Trust Management framework towards trust related attacks in the Social Internet of Things. Comput. Commun. 2022, 191, 92–107. [Google Scholar] [CrossRef]
- Jabeen, F.; Khan, Z.; Hamid, Z.; Rehman, Z.; Khan, A. Adaptive and survivable trust management for Internet of Things systems. IET Inf. Secur. 2021, 15, 375–394. [Google Scholar] [CrossRef]
- Shehada, D.; Gawanmeh, A.; Yeun, C.Y.; Zemerly, M.J. Fog-based distributed trust and reputation management system for internet of things. J. King Saud Univ. Comput. Inf. Sci. 2021, 34, 8637–8646. [Google Scholar] [CrossRef]
- Ren, J.; Qin, T. A novel multidimensional trust evaluation and fusion mechanism in fog-based Internet of Things. Comput. Networks 2022, 217, 109354. [Google Scholar] [CrossRef]
- Pinyol, I.; Sabater-Mir, J. Computational trust and reputation models for open multi-agent systems: A review. Artif. Intell. Rev. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Marsh, S. Formalising Trust as a Computational Concept. 1994. Available online: https://www.cs.stir.ac.uk/~kjt/techreps/pdf/TR133.pdf (accessed on 21 October 2024).
- Zeynalvand, L.; Luo, T.; Zhang, J. COBRA: Context-Aware Bernoulli Neural Networks for Reputation Assessment. arXiv 2019, arXiv:1912.08446. [Google Scholar] [CrossRef]
- Xu, X.; Bessis, N.; Cao, J. An Autonomic Agent Trust Model for IoT systems. Procedia Comput. Sci. 2013, 21, 107–113. [Google Scholar] [CrossRef]
- Azad, M.A.; Bag, S.; Hao, F.; Salah, K. M2M-REP: Reputation system for machines in the internet of things. Comput. Secur. 2018, 79, 1–16. [Google Scholar] [CrossRef]
- Ponnambalam, S.G.; Janardhanan, M.N.; Rishwaraj, G. Trust-based decision-making framework for multiagent system. Soft Comput. 2021, 25, 7559–7575. [Google Scholar] [CrossRef]
- Fortino, G.; Messina, F.; Rosaci, D.; Sarne, G.M.L.; Savaglio, C. A Trust-Based Team Formation Framework for Mobile Intelligence in Smart Factories. IEEE Trans. Ind. Inform. 2020, 16, 6133–6142. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
Acronym | Definition | Description |
---|---|---|
SLTPe | Service Lead Time | The latency between the initiation and the execution of the process. |
SSIM | Service Similarity | The similarity between the service requested and the service to be provided. |
SDAv | Description Accuracy | The similarity between the description of the service requested and the description of the service to be provided. |
SGUR | Service Guarantee | A service guarantee is a promise by a company that it will perform at a certain level. If that level is not met, the company promises to compensate the customer in some way. |
SATv | Service Satisfaction | A measure of how happy customers are with a company’s products, services, and capabilities using customers’ surveys and ratings. |
SCOST | Service Cost | The value of producing or consuming the goods or services. |
SOvRq | Over Request | The total values that are over the expected values for previous services. |
Parameter Name | Value | Format and Unit | Notes |
---|---|---|---|
Simulation run time | 10,000 | ticks | |
Clearance time | 2000 | ticks | extra clearance time |
Simulation tick-size | 500 | ms | |
Cycle delay period | 1000 | ms | |
Waiting time before reordering | Xct * ReO | ticks | |
Accepted responses | 90 | % | accepted number of responses |
Number of provided services | 2–8 | service/agent | |
Number of consumer services | 2–6 | service/agent |
Sub-Scenario Name | Dishonest Agents | Number of Agents | ||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | Total | ||
SSR1.1 | 0% | 10 | 15 | 20 | 25 | 70 |
SSR1.2 | 20 | 25 | 30 | 35 | 110 | |
SSR1.3 | 30 | 35 | 40 | 45 | 150 | |
SSR1.4 | 40 | 45 | 50 | 55 | 190 | |
SSR1.5 | 50 | 55 | 60 | 65 | 230 | |
SSR2.1 | 25% | 10 | 15 | 20 | 25 | 70 |
SSR2.2 | 20 | 25 | 30 | 35 | 110 | |
SSR2.3 | 30 | 35 | 40 | 45 | 150 | |
SSR2.4 | 40 | 45 | 50 | 55 | 190 | |
SSR2.5 | 50 | 55 | 60 | 65 | 230 | |
SSR3.1 | 50% | 10 | 15 | 20 | 25 | 70 |
SSR3.2 | 20 | 25 | 30 | 35 | 110 | |
SSR3.3 | 30 | 35 | 40 | 45 | 150 | |
SSR3.4 | 40 | 45 | 50 | 55 | 190 | |
SSR3.5 | 50 | 55 | 60 | 65 | 230 | |
SSR4.1 | 75% | 10 | 15 | 20 | 25 | 70 |
SSR4.2 | 20 | 25 | 30 | 35 | 110 | |
SSR4.3 | 30 | 35 | 40 | 45 | 150 | |
SSR4.4 | 40 | 45 | 50 | 55 | 190 | |
SSR4.5 | 50 | 55 | 60 | 65 | 230 |
Parameter | Weight (pw) | (Xi/SQR(SUM(X^2)) * 100 | Ideal Best | Ideal Worst | |||||
---|---|---|---|---|---|---|---|---|---|
IoT-CADM | ReGreT | SIoT | R-D-C | ||||||
Context Aware | 0.10 | 50.00 | 50.00 | 50.00 | 50.00 | max | 50.00 | min | 50.00 |
Quality of Service (QoS) | 0.10 | 57.70 | 57.70 | 57.70 | 0.00 | max | 57.70 | min | 0.00 |
Quality of Provider (QoP) | 0.10 | 100.00 | 0.00 | 0.00 | 0.00 | max | 100.00 | min | 0.00 |
Number of Active Agents | 0.10 | 61.00 | 48.30 | 48.10 | 40.30 | max | 61.00 | min | 40.30 |
Number of Completed Transaction | 0.10 | 65.20 | 44.70 | 44.20 | 42.40 | max | 65.20 | min | 42.40 |
Total Cash Utility | 0.10 | 65.30 | 44.60 | 44.20 | 42.30 | max | 65.30 | min | 42.30 |
Average Evaluation and Selection Time | 0.10 | 24.10 | 67.20 | 66.90 | 20.80 | min | 20.80 | max | 67.20 |
Average Number of SPs per Selection | 0.10 | 52.40 | 57.10 | 56.60 | 28.30 | max | 57.10 | min | 28.30 |
Total communication messages in the network | 0.05 | 51.40 | 58.50 | 57.80 | 24.50 | min | 24.50 | max | 58.50 |
Average communication messages per transaction | 0.05 | 38.50 | 62.40 | 62.20 | 27.40 | min | 27.40 | max | 62.40 |
Average Trust Evaluation (0–3000) | 0.05 | 83.00 | 15.10 | 37.80 | 38.30 | max | 83.00 | min | 15.10 |
Average Trust Evaluation (3000–~) | 0.05 | 64.00 | 49.80 | 42.00 | 40.80 | max | 64.00 | min | 40.80 |
Models | |||||||||
Function | IoT-CADM | ReGreT | SIoT | R-D-C | |||||
Ideal Best (IB) | 0.0156 | 0.1223 | 0.1200 | 0.1276 | |||||
Ideal Worst (IW) | 0.01367 | 0.0652 | 0.0658 | 0.0537 | |||||
Performance = IW/(IB + IW) | 0.8976 | 0.3477 | 0.3541 | 0.2962 | |||||
Final Rank | 1 | 3 | 2 | 4 |
Parameter | Weight (pw) | (Xi/SQR(SUM(X^2)) * 100 | Ideal Best | Ideal Worst | |||||
---|---|---|---|---|---|---|---|---|---|
IoT-CADM | ReGreT | SIoT | R-D-C | ||||||
Context Aware | 0.10 | 0.0500 | 0.0500 | 0.0500 | 0.0500 | max | 0.0500 | min | 0.0500 |
Quality of Service (QoS) | 0.10 | 0.0580 | 0.0580 | 0.0580 | 0.0000 | max | 0.0580 | min | 0.0000 |
Quality of Provider (QoP) | 0.10 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | max | 0.1000 | min | 0.0000 |
Number of Active Agents | 0.10 | 0.0606 | 0.0483 | 0.0483 | 0.0408 | max | 0.0606 | min | 0.0408 |
Number of Positive Transaction (0–3000) | 0.05 | 0.0353 | 0.0212 | 0.0192 | 0.0209 | max | 0.0353 | min | 0.0192 |
Number of Positive Transaction (3000–~) | 0.05 | 0.0357 | 0.0200 | 0.0196 | 0.0210 | max | 0.0357 | min | 0.0196 |
Total Cash Utility (0–3000) | 0.05 | 0.0355 | 0.0198 | 0.0166 | 0.0240 | max | 0.0355 | min | 0.0166 |
Total Cash Utility (3000–~) | 0.05 | 0.0391 | 0.0180 | 0.0170 | 0.0188 | max | 0.0391 | min | 0.0170 |
Average Evaluation and Selection Time | 0.10 | 0.0292 | 0.0661 | 0,0662 | 0.0199 | min | 0.0199 | max | 0.0662 |
Average Number of SPs per Selection | 0.10 | 0.0575 | 0.0552 | 0.0539 | 0.0272 | max | 0.0575 | min | 0.0272 |
Total communication messages in the network (0–3000) | 0.05 | 0.0329 | 0.0249 | 0.0253 | 0.0126 | min | 0.0126 | max | 0.0329 |
Total communication messages in the network (3000–~) | 0.05 | 0.0264 | 0.0287 | 0.0289 | 0.0135 | min | 0.0135 | max | 0.0289 |
Average communication messages per transaction | 0.05 | 0.0213 | 0.0304 | 0.0303 | 0.0143 | min | 0.0143 | min | 0.0304 |
Average Trust Evaluation | 0.05 | 0.0343 | 0.0202 | 0.0203 | 0.0225 | max | 0.0343 | min | 0.0202 |
Models | |||||||||
Function | IoT-CADM | ReGreT | SIoT | R-D-C | |||||
Ideal Best (IB) | 0.0264 | 0.1195 | 0.1205 | 0.1255 | |||||
Ideal Worst (IW) | 0.1329 | 0.0652 | 0.0645 | 0.0559 | |||||
Performance = IW/(IB + IW) | 0.8343 | 0.3530 | 0.3486 | 0.3082 | |||||
Final Rank | 1 | 2 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shamaileh, M.; Anthony, P.; Charters, S. Agent-Based Trust and Reputation Model in Smart IoT Environments. Technologies 2024, 12, 208. https://doi.org/10.3390/technologies12110208
Al-Shamaileh M, Anthony P, Charters S. Agent-Based Trust and Reputation Model in Smart IoT Environments. Technologies. 2024; 12(11):208. https://doi.org/10.3390/technologies12110208
Chicago/Turabian StyleAl-Shamaileh, Mohammad, Patricia Anthony, and Stuart Charters. 2024. "Agent-Based Trust and Reputation Model in Smart IoT Environments" Technologies 12, no. 11: 208. https://doi.org/10.3390/technologies12110208
APA StyleAl-Shamaileh, M., Anthony, P., & Charters, S. (2024). Agent-Based Trust and Reputation Model in Smart IoT Environments. Technologies, 12(11), 208. https://doi.org/10.3390/technologies12110208