Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations
Abstract
:1. Introduction
- Stage 1 involves performing morphological opening transformations on brain MRI scans (of MS patients and healthy individuals diagnosed by medical experts) to delete noise and other undesirable components, and then computing the granulometry of objects in the MRI scans in order to characterize the demyelination lesions in the brain white matter caused by MS. The resulting data are used to train two artificial neural network (ANN) models to predict MS diagnoses.
- Stage 2 involves performing morphological closing transformations on the brain MRI scans (of MS patients) to create a reference image (without lesions), and computing the granulometry of the objects within the image containing lesions and within the reference image in order to compare them. Then, the size of the MS lesions is estimated by calculating the differences in granulometry measurements. These measurements could support specialists’ decision-making processes to determine the course or progression of this disease.
2. Materials and Methods
2.1. Database
2.2. Proposed Algorithm
Artificial Neural Network
2.3. Mathematical Morphology
2.4. Geodesic Transformations
2.5. Morphological Reconstruction
Opening and Closing by Reconstruction
2.6. Image Measurements
3. Results
3.1. Algorithm (Stage 1)
3.2. Algorithm (Stage 2)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MS | multiple sclerosis; |
MRI | magnetic resonance imaging; |
MM | mathematical morphology; |
ANN | artificial neural network; |
CNS | central nervous system; |
RF | radiofrequency; |
SNR | signal-to-noise ratio; |
FLAIR | fluid-attenuated inversion recovery; |
CNN | convolutional neural network; |
CEN | convolutional encoder network; |
GAN | generative adversarial network; |
MP2RAGE | magnetization-prepared 2 rapid acquisition gradient echoes; |
UNI | uniform image; |
HHO | Harris Hawks Optimization; |
ML | machine learning; |
LPQ | local phase quantization; |
ExMPLPQ | exemplar multiple-parameter local phase quantization; |
LSTM | long short-term memory; |
FCM | fuzzy c-means; |
SE | structuring element; |
Dice similarity coefficient; | |
TPR | true positive rate; |
TNR | true negative rate. |
References
- Fernández, O.; Fernández, V.E.; Guerrero, M. Esclerosis múltiple. Med. Programa Form. Méd. 2015, 11, 4610–4621. [Google Scholar] [CrossRef]
- Milo, R.; Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 2014, 13, 518–524. [Google Scholar] [CrossRef]
- Marrodan, M.; Gaitán, M.I.; Correale, J. Spinal cord involvement in ms and other demyelinating diseases. Biomedicines 2020, 8, 130. [Google Scholar] [CrossRef]
- Hočevar, K.; Ristić, S.; Peterlin, B. Pharmacogenomics of multiple sclerosis: A systematic review. Front. Neurol. 2019, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Washington, F.; Langdon, D. Factors affecting adherence to disease-modifying therapies in multiple sclerosis: Systematic review. J. Neurol. 2022, 269, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Lladó, X.; Oliver, A.; Cabezas, M.; Freixenet, J.; Vilanova, J.C.; Quiles, A.; Rovira, À. Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Inf. Sci. 2012, 186, 164–185. [Google Scholar] [CrossRef]
- Wildner, P.; Stasiołek, M.; Matysiak, M. Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Mult. Scler. Relat. Disord. 2020, 37, 101452. [Google Scholar] [CrossRef]
- Katti, G.; Ara, S.A.; Shireen, A. Magnetic resonance imaging (MRI)—A review. Int. J. Dent. Clin. 2011, 3, 65–70. [Google Scholar]
- Xia, Y. Essential Concepts in MRI: Physics, Instrumentation, Spectroscopy and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Bharati, S.; Khan, T.Z.; Podder, P.; Hung, N.Q. A comparative analysis of image denoising problem: Noise models, denoising filters and applications. In Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications; Springer: Cham, Switzerland, 2021; pp. 49–66. [Google Scholar]
- Liu, X.; Song, L.; Liu, S.; Zhang, Y. A review of deep-learning-based medical image segmentation methods. Sustainability 2021, 13, 1224. [Google Scholar] [CrossRef]
- Norouzi, A.; Rahim, M.S.M.; Altameem, A.; Saba, T.; Rad, A.E.; Rehman, A.; Uddin, M. Medical image segmentation methods, algorithms, and applications. IETE Tech. Rev. 2014, 31, 199–213. [Google Scholar] [CrossRef]
- Jiao, R.; Zhang, Y.; Ding, L.; Xue, B.; Zhang, J.; Cai, R.; Jin, C. Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation. Comput. Biol. Med. 2023, 169, 107840. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Zhao, R.; Liu, F.; Dong, S.; Chinchali, S.; Topcu, U.; Duncan, J. Class-aware adversarial transformers for medical image segmentation. Adv. Neural Inf. Process. Syst. 2022, 35, 29582–29596. [Google Scholar] [PubMed]
- You, C.; Xiang, J.; Su, K.; Zhang, X.; Dong, S.; Onofrey, J.; Duncan, J.S. Incremental learning meets transfer learning: Application to multi-site prostate mri segmentation. In International Workshop on Distributed, Collaborative, and Federated Learning; Springer Nature: Cham, Switzerland, 2022; pp. 3–16. [Google Scholar]
- You, C.; Zhao, R.; Staib, L.H.; Duncan, J.S. Momentum contrastive voxel-wise representation learning for semi-supervised volumetric medical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer Nature: Cham, Switzerland, 2022; pp. 639–652. [Google Scholar]
- You, C.; Zhou, Y.; Zhao, R.; Staib, L.; Duncan, J.S. Simcvd: Simple contrastive voxel-wise representation distillation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 2022, 41, 2228–2237. [Google Scholar] [CrossRef]
- You, C.; Dai, W.; Min, Y.; Staib, L.; Duncan, J.S. Bootstrapping semi-supervised medical image segmentation with anatomical-aware contrastive distillation. In International Conference on Information Processing in Medical Imaging; Springer Nature: Cham, Switzerland, 2022; pp. 641–653. [Google Scholar]
- You, C.; Dai, W.; Liu, F.; Min, Y.; Su, H.; Zhang, X.; Duncan, J.S. Mine your own anatomy: Revisiting medical image segmentation with extremely limited labels. arXiv 2022, arXiv:2209.13476. [Google Scholar]
- You, C.; Dai, W.; Min, Y.; Liu, F.; Clifton, D.; Zhou, S.K.; Duncan, J. Rethinking semi-supervised medical image segmentation: A variance-reduction perspective. Adv. Neural Inf. Process. Syst. 2024, 36, 9984–10021. [Google Scholar]
- You, C.; Dai, W.; Min, Y.; Staib, L.; Sekhon, J.; Duncan, J.S. Action++: Improving semi-supervised medical image segmentation with adaptive anatomical contrast. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer Nature: Cham, Switzerland, 2023; pp. 194–205. [Google Scholar]
- You, C.; Dai, W.; Min, Y.; Staib, L.; Duncan, J.S. Implicit anatomical rendering for medical image segmentation with stochastic experts. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer Nature: Cham, Switzerland, 2023; pp. 561–571. [Google Scholar]
- You, C.; Yang, J.; Chapiro, J.; Duncan, J.S. Unsupervised wasserstein distance guided domain adaptation for 3d multi-domain liver segmentation. In Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, iMIMIC 2020, Second International Workshop, MIL3ID 2020, and 5th International Workshop, LABELS 2020, Held in Conjunction with MICCAI; Proceedings 3; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 155–163. [Google Scholar]
- Spagnolo, F.; Depeursinge, A.; Schädelin, S.; Akbulut, A.; Müller, H.; Barakovic, M.; Granziera, C. Automated MS lesion detection and segmentation in clinical workflow: A systematic review. Neuroimage Clin. 2023, 39, 103491. [Google Scholar] [CrossRef] [PubMed]
- Schlaeger, S.; Shit, S.; Eichinger, P.; Hamann, M.; Opfer, R.; Krüger, J.; Hedderich, D.M. AI-based detection of contrast-enhancing MRI lesions in patients with multiple sclerosis. Insights Into Imaging 2023, 14, 123. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Ghosh, S.; Huo, M.; Shawkat, M.S.A.; McCalla, S. Using convolutional encoder networks to determine the optimal magnetic resonance image for the automatic segmentation of multiple sclerosis. Appl. Sci. 2021, 11, 8335. [Google Scholar] [CrossRef]
- La Rosa, F.; Yu, T.; Barquero, G.; Thiran, J.P.; Granziera, C.; Cuadra, M.B. MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients. Comput. Biol. Med. 2021, 132, 104297. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Kundu, R.; Oliva, D.; Sarkar, R. Segmentation of brain MRI using an altruistic Harris Hawks’ Optimization algorithm. Knowl.-Based Syst. 2021, 232, 107468. [Google Scholar] [CrossRef]
- Macin, G.; Tasci, B.; Tasci, I.; Faust, O.; Barua, P.D.; Dogan, S.; Acharya, U.R. An accurate multiple sclerosis detection model based on exemplar multiple parameters local phase quantization: ExMPLPQ. Appl. Sci. 2022, 12, 4920. [Google Scholar] [CrossRef]
- de Oliveira, M.; Piacenti-Silva, M.; da Rocha, F.C.G.; Santos, J.M.; Cardoso, J.D.S.; Lisboa-Filho, P.N. Lesion volume quantification using two convolutional neural networks in MRIs of multiple sclerosis patients. Diagnostics 2022, 12, 230. [Google Scholar] [CrossRef]
- Acar, Z.Y.; Başçiftçi, F.; Ekmekci, A.H. Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI. Sustain. Comput. Inform. Syst. 2022, 35, 100706. [Google Scholar]
- Hashemi, M.; Akhbari, M.; Jutten, C. Delve into multiple sclerosis (MS) lesion exploration: A modified attention U-net for MS lesion segmentation in brain MRI. Comput. Biol. Med. 2022, 145, 105402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, P.; Tan, H. Spinal magnetic resonance image segmentation based on U-net. J. Radiat. Res. Appl. Sci. 2023, 16, 100627. [Google Scholar] [CrossRef]
- Rondinella, A.; Crispino, E.; Guarnera, F.; Giudice, O.; Ortis, A.; Russo, G.; Battiato, S. Boosting multiple sclerosis lesion segmentation through attention mechanism. Comput. Biol. Med. 2023, 161, 107021. [Google Scholar] [CrossRef]
- Bose, A.; Maulik, U.; Sarkar, A. An entropy-based membership approach on type-II fuzzy set (EMT2FCM) for biomedical image segmentation. Eng. Appl. Artif. Intell. 2024, 127, 107267. [Google Scholar] [CrossRef]
- de Arruda, A.L.C.; Vital, D.A.; Kitamura, F.C.; Abdala, N.; Moraes, M.C. Multiple sclerosis segmentation method in magnetic resonance imaging using fuzzy connectedness, binarization, mathematical morphology, and 3D reconstruction. Res. Biomed. Eng. 2020, 36, 291–301. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Consiglio, A.; Nuzziello, N.; Vessio, G. MicroRNA expression classification for pediatric multiple sclerosis identification. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 15851–15860. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations; Springer: Cham, Switzerland, 2017; Volume 10553, pp. 240–248. [Google Scholar]
- Cardenas, C.E.; McCarroll, R.E.; Court, L.E.; Elgohari, B.A.; Elhalawani, H.; Fuller, C.D.; Aristophanous, M. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Khanna, D.; Rana, P.S.; Khaibullin, T.; Martynova, E.; Rizvanov, A.A.; Khaiboullina, S.F.; Baranwal, M. Computational intelligence technique for prediction of multiple sclerosis based on serum cytokines. Front. Neurol. 2019, 10, 781. [Google Scholar] [CrossRef] [PubMed]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 1999; Volume 2, pp. 170–171. [Google Scholar]
- Soille, P. Geodesic transformations. In Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2004; pp. 183–218. [Google Scholar]
- Santibáñez, J.D.M.; Duarte, M.G.; Retana, J.J.O.; Campos, C.E.L. Segmentación y análisis granulométrico de sustancia blanca y gris en IRM para el estudio del estrabismo usando transformaciones morfológicas. Rev. Mex. Ing. Bioméd. 2007, 28, 13. [Google Scholar]
- Sharma, K.; Seachrist, E.; Tolaymat, S.; Joseph, J.; Feizi, P.; Sriwastava, S. Beyond MS: Other demyelinating disorders and common mimickers. In Clinical Aspects of Multiple Sclerosis Essentials and Current Updates; Elsevier: Amsterdam, The Netherlands, 2024; pp. 97–133. [Google Scholar]
- Aghajani, M.; Jalilzadeh, N.; Aghebati-Maleki, A.; Yari, A.; Tabnak, P.; Mardi, A.; Baradaran, B. Current approaches in glioblastoma multiforme immunotherapy. Clin. Transl. Oncol. 2024, 26, 1584–1612. [Google Scholar] [CrossRef]
Pseudocode | ||
---|---|---|
Start | ||
rgb = readImg(‘sample’.png) | ||
grayScale = rgbTogray(rgb) | ||
maskImg = grayScale | ||
markerImg1 = morphOpen(maskImg, SE 1(‘disk’, 5)) | ||
openRec1 = openRec(markerImg1, maskImg) | ||
MSlesions = intensityAdjust(openRec1) | ||
volMaskImg1 = 1.0×sum(maskImg) | ||
For | radius = 1:15 | |
markerImg2 = morphOpen(maskImg, SE(‘disk’, radius − 1)) | ||
openRec2 = openRec(markerImg2, maskImg) | ||
volOpenRec1 = sum(openRec2) | ||
markerImg3 = morphOpen(maskImg, SE(‘disk’, radius)) | ||
openRec3 = openRec(markerImg3, maskImg) | ||
volOpenRec2 = sum(openRec3) | ||
volGranu(radius) = (volOpenRec1 − volOpenRec2)/volMaskImg1 | ||
End |
Pseudocode | ||
---|---|---|
Start | ||
subtract = imgSub(maskImg, MSLesions) | ||
markerImg4 = morphClose(subtract, SE(’disk’, radius = 5)) | ||
closeRec1 1 = closeRec(markerImg4, maskImg) | ||
volMaskImg2 = 1.0×sum(closeRec1) | ||
For | radius = 1:15 | |
markerImg5 = morphOpen(closeRec1, SE(’disk’, radius − 1)) | ||
openRec5 = openRec(markerImg5, closeRec1) | ||
volOpenRec3 = sum(openRec5) | ||
markerImg6 = morfOpen(closeRec1, SE(’disk’, radius)) | ||
openRec6 = openRec(markerImg6, closeRec1) | ||
volOpenRec4 = sum(openRec6) | ||
volGranu(radius) = (volOpenRec3 − volOpenRec4)/volMaskImg2 | ||
End |
Model | Activations (Default) | Standardize (Enabled) | Lambda (Adjusted) | LayerSizes (Default) |
---|---|---|---|---|
ANN (axial) | ‘relu’ | true | 0.005 | 10 |
ANN (sagittal) | ‘relu’ | true | 0.02 | 10 |
Model | Test Accuracy | 1 | TPR 2 | TNR 3 | Cross-Entropy Loss |
---|---|---|---|---|---|
ANN (axial) | 0.9753 | 1.0 | 1.0 | 1.0 | 0.0247 |
ANN (sagittal) | 0.9197 | 0.888 | 1.0 | 0.833 | 0.0803 |
Reference | Image-Processing Technique | Classifier | Accuracy | 1 |
---|---|---|---|---|
[27] | CEN | U-Net, U-Net++, | - | 0.7159 |
Linknet | ||||
[30] | ExMPLPQ | kNN | 0.9837 2 | - |
0.9775 3 | - | |||
[31] | Lesion volume | CNN | 0.9969 | 0.9786 |
quantification | ||||
[32] | CNN | CNN | 0.98 4 | - |
0.903 5 | - | |||
[33] | Attention | Modified | - | 0.823 |
U-Net | U-Net | |||
[34] | U-Net | U-Net++ | - | 0.88 |
[35] | Augmented U-Net | LSTM | - | 0.89 |
This paper | Morphology and | ANN | 0.9753 2 | 1.0 |
granulometry | 0.9197 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce de Leon-Sanchez, E.R.; Mendiola-Santibañez, J.D.; Dominguez-Ramirez, O.A.; Herrera-Navarro, A.M.; Vazquez-Cervantes, A.; Jimenez-Hernandez, H.; Cordova-Esparza, D.M.; Cuán Hernández, M.d.l.A.; Senties-Madrid, H. Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations. Technologies 2024, 12, 145. https://doi.org/10.3390/technologies12090145
Ponce de Leon-Sanchez ER, Mendiola-Santibañez JD, Dominguez-Ramirez OA, Herrera-Navarro AM, Vazquez-Cervantes A, Jimenez-Hernandez H, Cordova-Esparza DM, Cuán Hernández MdlA, Senties-Madrid H. Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations. Technologies. 2024; 12(9):145. https://doi.org/10.3390/technologies12090145
Chicago/Turabian StylePonce de Leon-Sanchez, Edgar Rafael, Jorge Domingo Mendiola-Santibañez, Omar Arturo Dominguez-Ramirez, Ana Marcela Herrera-Navarro, Alberto Vazquez-Cervantes, Hugo Jimenez-Hernandez, Diana Margarita Cordova-Esparza, María de los Angeles Cuán Hernández, and Horacio Senties-Madrid. 2024. "Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations" Technologies 12, no. 9: 145. https://doi.org/10.3390/technologies12090145
APA StylePonce de Leon-Sanchez, E. R., Mendiola-Santibañez, J. D., Dominguez-Ramirez, O. A., Herrera-Navarro, A. M., Vazquez-Cervantes, A., Jimenez-Hernandez, H., Cordova-Esparza, D. M., Cuán Hernández, M. d. l. A., & Senties-Madrid, H. (2024). Training Artificial Neural Networks to Detect Multiple Sclerosis Lesions Using Granulometric Data from Preprocessed Magnetic Resonance Images with Morphological Transformations. Technologies, 12(9), 145. https://doi.org/10.3390/technologies12090145