A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions
Abstract
:1. Introduction
- A visualization and review of academic manuscripts and global patent portfolios, as well as key technologies (sensors, analytics) in practice towards environmental pollution monitoring using IoT.
- The combined textual analysis of academic scholarly databases and patent data systematically identifies and correlates issues within academic literature with corresponding solutions from patent records.
- Using textual analysis to design a low-cost pollution-detection architecture with IoT.
2. Background
2.1. Four-Layer IoT Structure
2.2. Related Works
2.3. Methodology
3. Analysis
3.1. Search Query
3.2. Academic and Patent Portfolio
- Advancements in Environmental Monitoring Technologies: In alignment with SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate Action), SDG 14 (Life Below Water), and SDG 15 (Life on Land), advancements in environmental monitoring technologies have become pivotal in addressing global environmental challenges. Researchers worldwide have made significant strides in proposing innovative mechanisms to monitor and mitigate environmental pollution. Sharafat et al. (2020) introduced a real-time air-pollution measurement system utilizing an arrayed sensor network, incorporating solar-recharged batteries and long-range communication technologies [59]. Liu et al. (2018) proposed a remote monitoring and control system to the plant walls, which utilizes cloud technology to automate the management procedure and improve the scalability [35]. Mohammed et al. (2022) explored the use of a low-cost drone swarm for air-pollution monitoring, employing UAVs and sensors [41]. Steven et al. (2019) successfully deployed a LoRaWAN-enabled AQ sensor network across Southampton, UK, based on initial air-quality testing [42]. Hafeez et al. (2018) focused on marine pollution, emphasizing sensor technologies and remote sensing for monitoring marine areas [48]. Sun et al. (2020) presented a smart algorithm detecting and tracking pollution stains, particularly oil spills, using wireless nodes [49]. Woo-García et al. (2024) proposed an autonomous energy wireless sensor network for monitoring environmental variables with a tree topology configuration [62].
- Energy-Efficient IoT Strategies and Low-Cost Monitoring Systems: In line with SGD 7, which aims to ensure universal access to affordable and reliable energy, Arshad et al. (2017) delved into strategies for minimizing energy consumption in IoT, addressing energy-efficient data centers, sensor data transmission, and energy-efficient policies [54]. Alam et al. (2017) provided a low-cost environmental pollution-monitoring system encompassing toxic gas measurements, sound pollution, and temperature monitoring [63]. Feenstra et al. (2019) designed a low-cost method for measuring ozone pollution using mobile sensors [43]. Oralhan et al. (2017) optimized waste collection through sensor-equipped garbage containers, resulting in significant cost savings [55]. Lin et al. (2017) outlined a people-centric and cognitive IoT environmental sensing platform, incorporating closed loops of interactions among nodes, devices, and servers [50].
- Innovative Approaches for Intelligent Transportation and Crowd Sensing: Lee et al. (2016) proposed an Internet of Vehicles approach for distributed transport decision-making [56]. Marjanović et al. (2016) introduced a framework for Green Mobile Crowd Sensing, employing quality-driven sensor management for optimal sensor selection [57]. Benammar et al. (2018) developed a real-time environmental monitoring system measuring various environmental parameters [52]. Thongchai et al. (2019) analyzed data from low-cost PM2.5 sensors for air-quality monitoring in a vulnerable Thailand city, focusing on high PM2.5 pollution [46].
- Patented Solutions in Environmental Monitoring and Resource Management: Several patented inventions highlight diverse applications of IoT in environmental monitoring. The CN203241793U patent features a ZigBee/GPRS or 3G-based gateway with an IP camera and RFID device applicable in agriculture, management, and decision-making. CN103175513A claims a hydrology and water-quality monitoring method based on IoT technology. CN105824280A presents an IoT environment monitoring system with various monitoring ends for central monitoring, water environment, noise, and solid waste. Other patents include intelligent traffic systems (CN101799977A), cloud computing-based air-quality monitoring (CN104820072A), three-dimensional intelligent seedling management (CN102960197A), and water pollution emergency treatment (CN103236020A). These patents showcase a wide array of innovative solutions in environmental monitoring and resource management.
4. Key Findings
5. Implications for Policy/Management/Practitioners
6. Conclusions and Limitations
7. Patent
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvey, L.D. Climate and Global Environmental Change; Routledge: London, UK, 2018. [Google Scholar]
- Matos, S.; Eric, V.; Benjamin, K.S.; Frank, W.G.; Yu, X. Innovation and climate change: A review and introduction to the special issue. Technovation 2022, 117, 102612. [Google Scholar] [CrossRef]
- Rayabharapu, V.K.; Rampur, V.; Jyothi, N.M.; Tripathi, V.; Bhaskar, T.; Glory, K.B. IOT sensor-based pollution management control technique. Meas. Sens. 2022, 24, 100513. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y.; Rybak, D. Measuring efficiency of power plants in Israel by data envelopment analysis. IEEE Trans. Eng. Manag. 1994, 41, 291–301. [Google Scholar] [CrossRef]
- van der Vooren, A.; Alkemade, F. Managing the diffusion of low emission vehicles. IEEE Trans. Eng. Manag. 2012, 59, 728–740. [Google Scholar] [CrossRef]
- Xie, X.; Huo, J.; Qi, G.; Zhu, K.X. Green process innovation and financial performance in emerging economies: Moderating effects of absorptive capacity and green subsidies. IEEE Trans. Eng. Manag. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Zhang, M.; Tse, Y.K.; Dai, J.; Chan, H.K. Examining green supply chain management and financial performance: Roles of social control and environmental dynamism. IEEE Trans. Eng. Manag. 2017, 66, 20–34. [Google Scholar] [CrossRef]
- Cruz, L.A.A.; Maria, T.T.G.; Thea, M.V.T.; Joel, T.B. Development of a low-cost air quality data acquisition IoT-based system using Arduino Leonardo. Int. J. Eng. Manuf. 2019, 9, 1. [Google Scholar]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Meng, Q. Greening internet of things for greener and smarter cities: A survey and future prospects. Telecommun. Syst. 2019, 72, 609–632. [Google Scholar] [CrossRef]
- Le, K.N.; Tam, V.W.Y.; Tran, C.N.N.; Wang, J.; Goggins, B. Life-cycle greenhouse gas emission analyses for Green Star’s concrete credits in Australia. IEEE Trans. Eng. Manag. 2018, 66, 286–298. [Google Scholar] [CrossRef]
- Fronzi, D.; Narang, G.; Galdelli, A.; Pepi, A.; Mancini, A.; Tazioli, A. Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System. Water 2024, 16, 152. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Marques, G.; Filipe, D.; Felgueiras, F.; Cardoso, J.P.; Azeredo, J.; Kazdaridis, G.; Symeonidis, P.; Keranidis, S.; Conradie, P.; et al. Implementation of an IoT architecture for promoting healthy air quality in 84 homes of families with children. Build. Environ. 2024, 266, 112040. [Google Scholar] [CrossRef]
- Folgado, F.J.; Calderón, D.; González, I.; Calderón, A.J. Review of Industry 4.0 from the perspective of automation and supervision systems: Definitions, architectures and recent trends. Electronics 2024, 13, 782. [Google Scholar] [CrossRef]
- Adam, M.; Hammoudeh, M.; Alrawashdeh, R.; Alsulaimy, B. A Survey on Security, Privacy, Trust, and Architectural Challenges in IoT Systems. IEEE Access 2024, 12, 57128–57149. [Google Scholar] [CrossRef]
- Trappey, A.J.C.; Trappey, C.V.; Govindarajan, U.H.; Chuang, A.C.; Sun, J.J. A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Adv. Eng. Inform. 2017, 33, 208–229. [Google Scholar] [CrossRef]
- Neelam, S.; Sood, S.K. A scientometric review of global research on smart disaster management. IEEE Trans. Eng. Manag. 2020, 68, 317–329. [Google Scholar] [CrossRef]
- Govindarajan, U.H.; Narang, G.; Kumar, M. Graphic Facilitation in the Engineering Workflow: Adoption Framework, Barriers, and Future Roadmap. IEEE Eng. Manag. Rev. 2022, 50, 186–202. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Broto, V.C.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef]
- Nakhle, P.; Stamos, I.; Proietti, P.; Siragusa, A. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Environ. Sustain. Indic. 2024, 21, 100332. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer vision and IoT-based sensors in flood monitoring and mapping: A systematic review. Sensors 2019, 19, 5012. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Fu, Q.; Zhang, Y.; Xu, D.; Wu, Y.; Qiu, Q.; Zhou, W. CAR-based cell therapy: Evaluation with bibliometrics and patent analysis. Hum. Vaccin. Immunother. 2021, 17, 4374–4382. [Google Scholar] [CrossRef] [PubMed]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 219–224. [Google Scholar]
- Liu, Y.; Ma, X.; Shu, L.; Yang, Q.; Zhang, Y.; Huo, Z. Internet of things for noise mapping in smart cities: State of the art and future directions. IEEE Netw. 2020, 34, 112–118. [Google Scholar] [CrossRef]
- Hayat, R.F.; Aurangzeb, S.; Aleem, M.; Srivastava, G.; Lin, J.C. ML-DDoS: A blockchain-based multilevel DDoS mitigation mechanism for IoT environments. IEEE Trans. Eng. Manag. 2022. [Google Scholar] [CrossRef]
- Hsiao, Y.C.; Wu, M.H.; Li, S.C. Elevated performance of the smart city—A case study of the IoT by innovation mode. IEEE Trans. Eng. Manag. 2019, 68, 1461–1475. [Google Scholar] [CrossRef]
- Marques, G.; Roque Ferreira, C.; Pitarma, R. A system based on the Internet of Things for real-time particle monitoring in buildings. Int. J. Environ. Res. Public Health 2018, 15, 821. [Google Scholar] [CrossRef]
- Marques, G.; Roque Ferreira, C.; Pitarma, R. Indoor air quality assessment using a CO2 monitoring system based on Internet of Things. J. Med. Syst. 2019, 43, 67. [Google Scholar] [CrossRef]
- Pitarma, R.; Marques, G.; Roque Ferreira, B. Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 2017, 41, 23. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Dutta, M.; Marques, G. A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 2020, 30, 6. [Google Scholar] [CrossRef]
- Ullo, S.L.; Sinha, G.R. Advances in smart environment monitoring systems using IoT and sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 2016, 13, 1152. [Google Scholar] [CrossRef] [PubMed]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. How to control the indoor environmental quality through the use of the Do-It-Yourself approach and new pervasive technologies. Energy Procedia 2017, 140, 351–360. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, S.; Yang, H.; Lv, J.; Liu, Y. A Big Data Driven Analytical Framework for Energy-Intensive Manufacturing Industries. J. Clean. Prod. 2018, 197, 57–72. [Google Scholar] [CrossRef]
- Liu, Y.; Hassan, K.A.; Karlsson, M.; Weister, O.; Gong, S. Active plant wall for green indoor climate based on cloud and Internet of Things. IEEE Access 2018, 6, 33631–33644. [Google Scholar] [CrossRef]
- Govindarajan, U.H.; Narang, G.; Zivlak, N.; Yadav, V.S. Industry 4.0 cross-domain blockchain solutions in healthcare: Trends and clinical considerations. In Blockchain for Industry 4.0; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–43. [Google Scholar]
- Mucke, H.A. Relating patenting and peer-review publications: An extended perspective on the vascular health and risk management literature. Vasc. Health Risk Manag. 2011, 7, 265–272. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 2017, 17, 1021. [Google Scholar] [CrossRef]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.F.Y.; Sultan, S.M.; Cho, S.; Pyun, J. Powering UAV with Deep Q-Network for Air Quality Tracking. Sensors 2022, 22, 6118. [Google Scholar] [CrossRef]
- Johnston, S.J.; Ashford, P.J.; Bulot, F.M.J.; Apetroaie-Cristea, M.; Easton, N.H.C.; Davenport, C.; Foster, G.L.; Loxham, M.; Morris, A.K.R.; Cox, S.J. City scale particulate matter monitoring using LoRaWAN based air quality IoT devices. Sensors 2019, 19, 209. [Google Scholar] [CrossRef]
- Feenstra, B.; Papapostolou, V.; Boghossian, B.D.; Cocker, D.; Polidori, A. Development of a network of accurate ozone sensing nodes for parallel monitoring in a site relocation study. Sensors 2019, 20, 16. [Google Scholar] [CrossRef]
- Lee, S.S.; Park, J.H. Design of IoT based fire-watching and atmospheric environment monitoring systems applied with compound sensors and image processing. Int. J. Smart Home 2016, 10, 155–168. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- Kanabkaew, T.; Mekbungwan, P.; Raksakietisak, S.; Kanchana, K. Detection of PM2.5 plume movement from IoT ground level monitoring data. Environ. Pollut. 2019, 252, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.; Mafra, S.; Teixeira, E.; Figueiredo, F. Smart strawberry farming using edge computing and IoT. Sensors 2022, 22, 5866. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Kwok, C.Y.T.; Nichol, J.; Lee, K.H.; Tang, D.; Pun, L. Detection and monitoring of marine pollution using remote sensing technologies. In Monitoring of Marine Pollution; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Sun, X.; Li, Y.; Wang, N.; Li, Z.; Liu, M.; Gui, G. Toward self-adaptive selection of kernel functions for support vector regression in IoT-based marine data prediction. IEEE Internet Things J. 2020, 7, 9943–9952. [Google Scholar] [CrossRef]
- Lin, Y.; Li, W.; Ghandehari, M.; Fortino, G. People-centric cognitive internet of things for the quantitative analysis of environmental exposure. IEEE Internet Things J. 2017, 5, 2353–2366. [Google Scholar]
- Zito, F.; Giannoccaro, N.I.; Serio, R.; Strazzella, S. Analysis and Development of an IoT System for an Agrivoltaics Plant. Technologies 2024, 12, 106. [Google Scholar] [CrossRef]
- Benammar, M.; Abdaoui, A.; Ahmad, S.H.M.; Touati, F.; Kadri, A. A modular IoT platform for real-time indoor air quality monitoring. Sensors 2018, 18, 581. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, J. Air pollution forecasts and results-oriented tracking. Air Qual. Atmos. Health 2008, 1, 203–207. [Google Scholar] [CrossRef]
- Arshad, R.; Zahoor, S.; Shah, M.A.; Wahid, A.; Yu, H. Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access 2017, 5, 15667–15681. [Google Scholar] [CrossRef]
- Oralhan, Z.; Oralhan, B.; Yiğit, Y. Smart city application: Internet of Things (IoT) technologies based smart waste collection using data mining approach and ant colony optimization. Int. Arab J. Inf. Technol. 2017, 14, 423–427. [Google Scholar]
- Lee, E.-K.; Gerla, M.; Pau, G.; Lee, U.; Lim, J.-H. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. Fogs. Int. J. Distrib. Sens. Netw. 2016, 12, 1550147716665500. [Google Scholar]
- Marjanović, M.; Skorin-Kapov, L.; Pripužić, K.; Antonić, A.; Podnar Žarko, I. Energy-aware and quality-driven sensor management for green mobile crowd sensing. J. Netw. Comput. Appl. 2016, 59, 95–108. [Google Scholar] [CrossRef]
- Arzate-Rivas, O.; Sámano-Ortega, V.; Martínez-Nolasco, J.; Santoyo-Mora, M.; Martínez-Nolasco, C.; De León-Lomelí, R. IoT Energy Management System Based on a Wireless Sensor/Actuator Network. Technologies 2024, 12, 140. [Google Scholar] [CrossRef]
- Ali, S.; Glass, T.; Parr, B.; Potgieter, J.; Alam, F. Low-cost sensor with IoT LoRaWAN connectivity and machine learning-based calibration for air pollution monitoring. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Bamodu, O.; Xia, L.; Tang, L. An indoor environment monitoring system using low-cost sensor network. Energy Procedia 2017, 141, 660–666. [Google Scholar] [CrossRef]
- Daim, T.; Lai, K.K.; Yalcin, H.; Alsoubie, F.; Kumar, V. Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain. Technol. Forecast. Soc. Change 2020, 161, 120329. [Google Scholar] [CrossRef]
- Woo-García, R.M.; Pérez-Vista, J.M.; Sánchez-Vidal, A.; Herrera-May, A.L.; Osorio-de-la-Rosa, E.; Caballero-Briones, F.; López-Huerta, F. Implementation of a Wireless Sensor Network for Environmental Measurements. Technologies 2024, 12, 41. [Google Scholar] [CrossRef]
- Alam, S.S.; Islam, A.J.; Hasan, M.M.; Rafid, M.N.M.; Chakma, N.; Imtiaz, M.N. Design and development of a low-cost IoT based environmental pollution monitoring system. In Proceedings of the 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 652–656. [Google Scholar]
- Rao, R.S.; Kumar, G.A.E.S. IoT based GPS controlled environment monitoring robotic system. Ann. Rom. Soc. Cell Biol. 2021, 25, 6670–6679. [Google Scholar]
- Khedo, K.K.; Chikhooreeah, V. Low-cost energy-efficient air quality monitoring system using wireless sensor network. In Wireless Sensor Networks-Insights and Innovations; IntechOpen: Rijeka, Croatia, 2017; Volume 1, p. 13. [Google Scholar]
- Ni, J.; Lin, X.; Shen, X.S. Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT. IEEE J. Sel. Areas Commun. 2018, 36, 644–657. [Google Scholar] [CrossRef]
- Zielinski, O.; Busch, J.A.; Cembella, A.D.; Daly, K.L.; Engelbrektsson, J.; Hannides, A.K.; Schmidt, H. Detecting marine hazardous substances and organisms: Sensors for pollutants, toxins, and pathogens. Ocean Sci. 2009, 5, 329–349. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
Type | Name | Feature |
---|---|---|
Protocol | MQTT | Machine-to-machine, lightweight |
Modbus | Serial communication protocol for industrial devices to fulfill the industrial IoT (IIoT) is TCP/IP. Precious version like RTU do not align with the needs of IoT infrastructure | |
IPv4, IPv6 | The rules to control the communication between computers over a network | |
Wireless network | LoRaWan | Suitable for battery-operated wireless devices with high flexibility of localization and mobility |
Zigbee | Low-power mesh network based on IEEE 802.15.4 standards [15] | |
Bluetooth | Wireless personal area networks are mainly used in mobile-computing platforms and gadgets |
Ref. | Perception Layer | Transmission Layer | Computation Layer | Application Layer |
---|---|---|---|---|
[27] | Particulate matter sensor (PMS5003) | Wi-Fi, SQL server | WEMOS D1 mini(microcontroller) | iDust system (web application, ASP.NET), warning alarm system |
[32] | Air temperature and humidity sensor (SHT10), CO2 sensor (T6615), CO sensor (MQ7), glow sensor (LDR5mm) | Zigbee, Wi-Fi | Arduino, esp8266, Xigbee module, Wemos mini D1, MySQL, php, android | Indoor air quality(iAQ) web, iAQ mobile |
[31] | Humidity sensor (DHT22), CO2 sensor (K30), photoresistor | Zigbee | XBee S2 module | Smart lamp to detect indoor environment quality |
[34] | Water meter, gas meter, quality meter, electricity meter | WLAN, Wi-Fi, RS-485/232, Ethernet etc. | Data center (model layer: energy consumption analysis, energy data mining; objective layer: operation research) | Emission reduction |
[35] | CO2 sensor (MH-Z16), PM sensor (Grove dust), light sensor (SI1145), Air temperature and humidity sensor (DHT11), ultrasonic sensor | Wi-Fi | Arduino Uno, MS SQL, IoT hub, Azure web application | Indoor air-quality Web application |
Source | Keywords | Year Limit | Result |
---|---|---|---|
Scopus | TITLE-ABS-KEY (environment AND “internet of things”) | PUBYEAR > 1 January 2008 < 1 January 2024 | 28,721 |
Web of Science | ALL FIELDS: environment AND ALL FIELDS: (internet of things) | Timespan: 1 January 2008–1 January 2024 | 46,333 |
Incopat | CTB = (environment) AND CTB = (“internet of things”) | (PY ≥ (1 January 2008) AND PY ≤ (1 January 2024)); | 35,000 |
Layer | Pollution Framework | Relevant Keywords | VOS Clustering Result | Ref./Patent No. |
---|---|---|---|---|
Application | Management | Quality | Indoor air quality | [28,32,33] |
Indoor environmental quality | [39,40] | |||
Air quality | [31,41,42,43,44,45,46,47] | |||
Water quality | [48,49] | |||
Monitor | Real-time monitoring | [28,31,33,35,48,50,51] | ||
Environmental monitoring | [52] | |||
Pollution monitoring | [41,49,53] | |||
Reduction & Prediction | Pollution reduction | [35,50,54,55,56] | ||
Energy consumption reduction | [54,57,58] | |||
Prediction | [46,47,53] | |||
Sustain | Sustainable city | [53,55,59] | ||
Sustainability | [45,59] | |||
Management | Waste management | [45,55] | ||
Computation | Effect | Pollution | Air pollution | [31,41,42,44,50,57] |
Environmental pollution | [31,52,55] | |||
Urban pollution | [42,53,57] | |||
Water pollution | [48,49] | |||
Noise pollution | [31,41,55,57] | |||
- | Analytics | Data analytics | [35,50,55,59] | |
Neural network | [35,48] | |||
Compute | Fog compute | [53,56] | ||
Green compute | [54] | |||
Transmission | - | Network | Wireless sensor network | [28,33,41,42,49,54,57,58,59] |
Communication protocol | Lora | [42,47] | ||
Zigbee | [33,39,41,49] | |||
Wi-Fi | [28,31,33,35,42,59] | |||
Positioning system | GPS | [40,41,44,47,49,52,56,59,60] | ||
Perception | Propagation/Outcome /Action a | Air | Ozone | [43,44] |
Carbon emission | [31,33,35,39,44,59] | |||
Particulate matter | [28,41,42,44,46,50,52] | |||
Temperature | [31,33,40,41,44,47,52,60] | |||
Sensor | Dust sensor | [31,44,53] | ||
Low-cost sensor | [28,31,40,41,42,44,46] | |||
Gas sensor | [28,31,33,41,42,44,53,59], (CN203241793U, 2013) | |||
IR sensor | [48,60] | |||
Ultrasonic sensor | (CN203241793U, 2013) | |||
Emission | Carbon emission | [31,33,35,39,44,55,59] |
Layer | Pollution Framework | Relevant Keywords | VOS Clustering Result | Reference Patents |
---|---|---|---|---|
Application | Management | Quality | Water quality | [(CN103175513A, 2013), (CN105824280A, 2016), (CN108120815B, 2019) |
Indoor air quality | (CN103792944A, 2014), (KR2017094877A, 2017), (KR2016076782A, 2016), (KR1798394B1, 2017) | |||
Air quality | (CN104820072A, 2015), (CN104410706A, 2015), (EP3513184A1, 2019), (KR2017052743A, 2017) | |||
Monitor | Real-time monitoring | (CN103175513A, 2013), (CN103489053A, 2014), (CN103792944A, 2014), (CN104820072A, 2015), (CN104760490B, 2017), (CN202057645U, 2011), (WO2018098721A1, 2018), (KR2017094877A, 2017), (CN105890657A, 2016), (CN203011912U, 2013) to (CN108120815B, 2019), | ||
Water-quality monitoring | (CN103175513A, 2013), (CN103489053A, 2014), (CN105824280A, 2016), (CN103543706A, 2014), (CN202057645U, 2011), (CN103236020A, 2013), (CN203011912U, 2013), (CN108120815B, 2019) | |||
Personal air-quality monitoring | (CN104760490B, 2017), (EP3513184A1, 2019) | |||
Environmental monitoring | (CN105824280A, 2016), (CN204776976U, 2015), (WO2018098721A1, 2018), (US20150026044A1, 2015) | |||
Layer | Application layer | (CN103543706A, 2014), (CN102625485B, 2015) | ||
Network layer | (CN104820072A, 2015), (CN103543706A, 2014), (CN203011912U, 2013), (CN102625485B, 2015) | |||
Sensor layer | (CN103543706A, 2014), (CN203011912U, 2013), (CN102625485B, 2015) | |||
Computation | Effect | Pollution | Pollutant | (CN105824280A, 2016), (CN202057645U, 2011), (CN103236020A, 2013), (WO2018098721A1, 2018), (CN203011912U, 2013), (CN108489553A, 2018) |
Air pollution | (CN101799977A, 2010), (CN104760490B, 2017), (CN104410706A, 2015), (KR2017094877A, 2017), (CN105890657A, 2016), (KR2017052743A, 2017) | |||
Noise pollution | (CN105824280A, 2016), (US12151612B2, 2024) | |||
Waste | Waste | (CN105824280A, 2016), (CN204776976U, 2015) | ||
- | Module | Communication module | (CN203241793U, 2013), (US20150026044A1, 2015), (KR2017094877A, 2017), (KR2016076782A, 2016), (KR2017052743A, 2017) | |
Wireless communication module | (CN203241793U, 2013), (CN103792944A, 2014), (CN101799977A, 2010), (CN104820072A, 2015), (CN103543706A, 2014), (CN204776976U, 2015), (CN105890657A, 2016) | |||
Control module | (CN103489053A, 2014), (CN101799977A, 2010), (CN204776976U, 2015), (KR2017052743A, 2017) | |||
Display module | (CN204776976U, 2015), (US20150026044A1, 2015) | |||
Power supply module | (CN102960197A, 2013), (CN105890657A, 2016) | |||
Computer | Server | (CN103792944A, 2014), (WO2018098721A1, 2018), (CN105890657A, 2016), (KR1798394B1, 2017) | ||
Central processer | (CN103792944A, 2014), (CN103543706A, 2014), (CN204776976U, 2015) | |||
Cloud | (CN103489053A, 2014), (CN104820072A, 2015), (CN104410706A, 2015), (CN203011912U, 2013) | |||
Neural network | (CN103175513A, 2013), (CN108120815B, 2019) | |||
Transmission | - | Wireless | RFID | (CN203241793U, 2013), (CN116616952A, 2023) |
Wireless communication | (CN104760490B, 2017), (CN103236020A, 2013), (KR1798394B1, 2017) | |||
Perception | Propagation/Outcome | Water | Water environment | (CN103175513A, 2013), (CN202057645U, 2011), (CN203011912U, 2013), (CN108120815B, 2019) |
Sewage | (CN203011912U, 2013), (CN108120815B, 2019) | |||
Drainage | (CN103543706A, 2014), (CN108120815B, 2019) | |||
Air | Air purifier | (CN103792944A, 2014), (CN104760490B, 2017), (KR2016076782A, 2016), (EP3513184A1, 2019), (KR2017052743A, 2017), (KR1798394B1, 2017) | ||
Air sterilizer | (KR2017052743A, 2017), (KR1798394B1, 2017) | |||
Airflow | (EP3513184A1, 2019), (KR2017052743A, 2017), (KR1798394B1, 2017) | |||
Sensor | Sensor module | (CN103175513A, 2013), (CN102960197A, 2013), (CN204776976U, 2015), (US20150026044A1, 2015), (KR2017094877A, 2017), (CN105890657A, 2016), (CN108120815B, 2019), (CN102625485B, 2015) | ||
Gas sensor | (CN104760490B, 2017), (CN104410706A, 2015) | |||
Water-quality sensor | (CN103175513A, 2013), (CN103543706A, 2014), (CN203011912U, 2013), (CN108120815B, 2019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govindarajan, U.H.; Zhang, C.; Raut, R.D.; Narang, G.; Galdelli, A. A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions. Technologies 2025, 13, 64. https://doi.org/10.3390/technologies13020064
Govindarajan UH, Zhang C, Raut RD, Narang G, Galdelli A. A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions. Technologies. 2025; 13(2):64. https://doi.org/10.3390/technologies13020064
Chicago/Turabian StyleGovindarajan, Usharani Hareesh, Chuyi Zhang, Rakesh D. Raut, Gagan Narang, and Alessandro Galdelli. 2025. "A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions" Technologies 13, no. 2: 64. https://doi.org/10.3390/technologies13020064
APA StyleGovindarajan, U. H., Zhang, C., Raut, R. D., Narang, G., & Galdelli, A. (2025). A Review of Academic and Patent Progress on Internet of Things (IoT) Technologies for Enhanced Environmental Solutions. Technologies, 13(2), 64. https://doi.org/10.3390/technologies13020064