Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications
Abstract
:1. Introduction
2. Review on GeTe and VO2 based RF Switches
2.1. Review on GeTe
2.1.1. Phase Transition Mechanism and DC Characteristics
2.1.2. GeTe Growth Process
2.1.3. Device Fabrication and RF Characteristics
2.2. Review on VO2
2.2.1. Phase Transition Mechanism and DC Characteristics
2.2.2. Growth and Fabrications
2.2.3. Device Fabrication and RF Characteristics
Thermally Triggered RF Switches
Electrically Triggered RF Switches
3. Performance Benchmarking of GeTe and VO2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Lin, F.; Rais-Zadeh, M. Need a Change? Try GeTe: A Reconfigurable Filter Using Germanium Telluride Phase Change RF Switches. IEEE Microw. Mag. 2016, 17, 70–79. [Google Scholar] [CrossRef]
- Rais-Zadeh, M.; Wang, M. Advanced reconfigurable RF/microwave electronics. In Proceedings of the 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, USA, 15–18 January 2017; pp. 13–15. [Google Scholar]
- Ha, S.D.; Zhou, Y.; Duwel, A.E.; White, D.W.; Ramanathan, S. Quick switch: Strongly correlated electronic phase transition systems for cutting-edge microwave devices. IEEE Microw. Mag. 2014, 15, 32–44. [Google Scholar] [CrossRef]
- Wang, M.; Rais-Zadeh, M. Development and evaluation of germanium telluride phase change material based ohmic switches for RF applications. J. Micromech. Microeng. 2016, 27, 013001. [Google Scholar] [CrossRef]
- Borodulin, P.; El-Hinnawy, N.; Padilla, C.R.; Ezis, A.; King, M.R.; Johnson, D.R.; Nichols, D.T.; Young, R.M. Recent advances in fabrication and characterization of GeTe-based phase-change RF switches and MMICs. In Proceedings of the 2017 IEEE MTT-S International InMicrowave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 285–288. [Google Scholar]
- Yamada, N.; Ohno, E.; Akahira, N.; Nishiuchi, K.I.; Nagata, K.I.; Takao, M. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 1987, 26, 61. [Google Scholar] [CrossRef]
- Raoux, S.; Wełnic, W.; Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 2009, 110, 240–267. [Google Scholar] [CrossRef] [PubMed]
- Raoux, S. Phase change materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. [Google Scholar] [CrossRef]
- Siegrist, T.; Merkelbach, P.; Wuttig, M. Phase change materials: Challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 2012, 3, 215–237. [Google Scholar] [CrossRef]
- Tomer, D.; Coutu, R.A. A Phase Change Material for Reconfigurable Circuit Applications. Appl. Sci. 2018, 8, 130. [Google Scholar] [CrossRef]
- Champlain, J.G.; Ruppalt, L.B.; Guyette, A.C.; El-Hinnawy, N.; Borodulin, P.; Jones, E.; Young, R.M.; Nichols, D. Examination of the temperature dependent electronic behavior of GeTe for switching applications. J. Appl. Phys. 2016, 119, 244501. [Google Scholar] [CrossRef]
- Raoux, S.; Muñoz, B.; Cheng, H.Y.; Jordan-Sweet, J.L. Phase transitions in Ge–Te phase change materials studied by time-resolved x-ray diffraction. Appl. Phys. Lett. 2009, 95, 143118. [Google Scholar] [CrossRef]
- Raoux, S.; Cheng, H.-Y.; Muñoz, B.; Jordan-Sweet, J.L. Crystallization characteristics of Ge-Sb and Ge-Te phase change materials. Proc. EPCOS 2009, 91–98. [Google Scholar] [CrossRef]
- Choi, Y.F. Phase-change materials: Trends and prospects. In ECI Workshop; Lehigh University: Bethlehem, PA, USA, 2013. [Google Scholar]
- Wang, M. Phase Change Material Based Ohmic Switches for Reconfigurable RF Applications. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2017. [Google Scholar]
- Rossnagel, S.M. Directional and ionized physical vapor deposition for microelectronics applications. J. Vac. Sci. Technol. B 1998, 16, 2585–2608. [Google Scholar] [CrossRef]
- Sun, X. Phase Transformations and Switching of Chalcogenide Phase-change Material Films Prepared by Pulsed Laser Deposition. Available online: http://www.qucosa.de/fileadmin/data/qucosa/documents/22476/Dissertation_Sun_final%20version.pdf (accessed on 4 May 2018).
- Chrisey, D.B.; Hubler, G.K. (Eds.) Pulsed Laser Deposition of Thin Films; J. Wiley: New York, NY, USA, 1994. [Google Scholar]
- Kim, R.Y.; Kim, H.G.; Yoon, S.G. Structural properties of Ge2Sb2Te5 thin films by metal organic chemical vapor deposition for phase change memory applications. Appl. Phys. Lett. 2006, 89, 102107. [Google Scholar] [CrossRef]
- Kim, R.Y.; Kim, H.G.; Yoon, S.G. Characterization of Ge1−x Tex Chalcogenide Thin Films Deposited by MOCVD for Phase Change Memory Applications. J. Electrochem. Soc. 2008, 155, D137–D140. [Google Scholar] [CrossRef]
- Chen, P.S.; Hunks, W.J.; Stender, M.; Chen, T.; Stauf, G.T.; Xu, C.; Roeder, J.F. CVD of amorphous GeTe thin films. MRS Online Proc. Libr. Arch. 2008, 1071. [Google Scholar] [CrossRef]
- Lee, J.I.; Park, H.; Cho, S.L.; Park, Y.L.; Bae, B.J.; Park, J.H.; Park, J.S.; An, H.G.; Bae, J.S.; Ahn, D.H.; et al. Highly scalable phase change memory with CVD GeSbTe for sub 50 nm generation. In Proceedings of the 2007 IEEE Symposium on VLSI Technology, Kyoto, Japan, 12–14 June 2007; pp. 102–103. [Google Scholar]
- Chen, K.N.; Krusin-Elbaum, L.; Newns, D.M.; Elmegreen, B.G.; Cheek, R.; Rana, N.; Young, A.M.; Koester, S.J.; Lam, C. Programmable via using indirectly heated phase-change switch for reconfigurable logic applications. IEEE Electron Device Lett. 2008, 29, 131–133. [Google Scholar] [CrossRef]
- Lo, H.; Chua, E.; Huang, J.C.; Tan, C.C.; Wen, C.Y.; Zhao, R.; Shi, L.; Chong, C.T.; Paramesh, J.; Schlesinger, T.E.; et al. Three-terminal probe reconfigurable phase-change material switches. IEEE Trans. Electron Devices 2010, 57, 312–320. [Google Scholar] [CrossRef]
- Chua, E.K.; Shi, L.P.; Zhao, R.; Lim, K.G.; Chong, T.C.; Schlesinger, T.E.; Bain, J.A. Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications. Appl. Phys. Lett. 2010, 97, 183506. [Google Scholar] [CrossRef]
- Shim, Y.; Hummel, G.; Rais-Zadeh, M. RF switches using phase change materials. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 237–240. [Google Scholar]
- El-Hinnawy, N.; Borodulin, P.; Wagner, B.; King, M.R.; Mason, J.S.; Jones, E.B.; McLaughlin, S.; Veliadis, V.; Snook, M.; Sherwin, M.E.; et al. A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. IEEE Electron Device Lett. 2013, 34, 1313–1315. [Google Scholar] [CrossRef]
- El-Hinnawy, N.; Borodulin, P.; Wagner, B.P.; King, M.R.; Mason, J.S.; Jones, E.B.; Veliadis, V.; Howell, R.S.; Young, R.M.; Lee, M.J. A 7.3 THz cut-off frequency, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. In Proceedings of the Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 13–16 October 2013; pp. 1–4. [Google Scholar]
- Wang, M.; Shim, Y.; Rais-Zadeh, M. A low-loss directly heated two-port RF phase change switch. IEEE Electron Device Lett. 2014, 35, 491–493. [Google Scholar] [CrossRef]
- Wang, M.; Rais-Zadeh, M. Directly heated four-terminal phase change switches. In Proceedings of the Microwave Symposium (IMS), 2014 IEEE MTT-S International 2014, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Moon, J.S.; Seo, H.C.; Le, D. Development toward high-power sub-1-ohm DC-67 GHz RF switches using phase change materials for reconfigurable RF front-end. In Proceedings of the Microwave Symposium (IMS), 2014 IEEE MTT-S International 2014, Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar]
- Moon, J.S.; Seo, H.C.; Le, D.; Fung, H.; Schmitz, A.; Oh, T.; Kim, S.; Son, K.A.; Zehnder, D.; Yang, B. 11 THz figure-of-merit phase-change RF switches for reconfigurable wireless front-ends. In Proceedings of the Microwave Symposium (IMS), 2015 IEEE MTT-S International 2015, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar]
- Ghalem, A.; Hariri, A.; Guines, C.; Passerieux, D.; Huitema, L.; Blondy, P.; Crunteanu, A. Arrays of GeTe electrically activated RF switches. In Proceedings of the Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017 IEEE MTT-S International Microwave Workshop Serie, Pavia, Italy, 20–22 September 2017; pp. 1–3. [Google Scholar]
- Léon, A.; Saint-Patrice, D.; Castellani, N.; Navarro, G.; Puyal, V.; Reig, B.; Podevin, F.; Ferrari, P.; Perret, E. In-depth characterization of the structural phase change of Germanium Telluride for RF switches. In Proceedings of the Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017 IEEE MTT-S International Microwave Workshop Series, Pavia, Italy, 20–22 September 2017; pp. 1–3. [Google Scholar]
- Morin, F.J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34. [Google Scholar] [CrossRef]
- Goodenough, J.B. Anomalous properties of the vanadium oxides. Annu. Rev. Mater. Sci. 1971, 1, 101–138. [Google Scholar] [CrossRef]
- Tokura, Y. Correlated-electron physics in transition-metal oxides. Phys. Today 2003, 56, 50–55. [Google Scholar] [CrossRef]
- Stefanovich, G.; Pergament, A.; Stefanovich, D. Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter 2000, 12, 8837. [Google Scholar] [CrossRef]
- Yang, Z.; Ko, C.; Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367. [Google Scholar] [CrossRef]
- Cavalleri, A.; Dekorsy, T.; Chong, H.H.; Kieffer, J.C.; Schoenlein, R.W. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale. Phys. Rev. B 2004, 70, 161102. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Brehm, M.; Chae, B.G.; Ho, P.C.; Andreev, G.O.; Kim, B.J.; Yun, S.J.; Balatsky, A.V.; Maple, M.B.; Keilmann, F.; et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753. [Google Scholar] [CrossRef] [PubMed]
- Qazilbash, M.M.; Tripathi, A.; Schafgans, A.A.; Kim, B.J.; Kim, H.T.; Cai, Z.; Holt, M.V.; Maser, J.M.; Keilmann, F.; Shpyrko, O.G.; et al. Nanoscale imaging of the electronic and structural transitions in vanadium dioxide. Phys. Rev. B 2011, 83, 165108. [Google Scholar] [CrossRef]
- Martens, K.; Radu, I.P.; Mertens, S.; Shi, X.; Nyns, L.; Cosemans, S.; Favia, P.; Bender, H.; Conard, T.; Schaekers, M.; et al. The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch On-Off resistance. J. Appl. Phys. 2012, 112, 124501. [Google Scholar] [CrossRef]
- Cavalleri, A.; Tóth, C.; Siders, C.W.; Squier, J.A.; Ráksi, F.; Forget, P.; Kieffer, J.C. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 2001, 87, 237401. [Google Scholar] [CrossRef] [PubMed]
- Kikuzuki, T.; Lippmaa, M. Characterizing a strain-driven phase transition in VO2. Appl. Phys. Lett. 2010, 96, 132107. [Google Scholar] [CrossRef]
- Gupta, A.; Aggarwal, R.; Gupta, P.; Dutta, T.; Narayan, R.J.; Narayan, J. Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001). Appl. Phys. Lett. 2009, 95, 111915. [Google Scholar] [CrossRef]
- Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R. Electric-field-driven phase transition in vanadium dioxide. Phys. Rev. B 2011, 84, 241410. [Google Scholar] [CrossRef]
- Duchene, J.; Terraillon, M.; Pailly, P.; Adam, G. Filamentary Conduction in VO2 Coplanar Thin-Film Devices. Appl. Phys. Lett. 1971, 19, 115–117. [Google Scholar] [CrossRef]
- Ha, S.D.; Zhou, Y.; Fisher, C.J.; Ramanathan, S.; Treadway, J.P. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices. J. Appl. Phys. 2013, 113, 184501. [Google Scholar] [CrossRef]
- Sahana, M.B.; Subbanna, G.N.; Shivashankar, S.A. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. J. Appl. Phys. 2002, 92, 6495–6504. [Google Scholar] [CrossRef]
- Ruzmetov, D.; Zawilski, K.T.; Narayanamurti, V.; Ramanathan, S. Structure-functional property relationships in rf-sputtered vanadium dioxide thin films. J. Appl. Phys. 2007, 102, 113715. [Google Scholar] [CrossRef]
- Narayan, J.; Bhosle, V.M. Phase transition and critical issues in structure-property correlations of vanadium oxide. J. Appl. Phys. 2006, 100, 103524. [Google Scholar] [CrossRef]
- Zhang, H.T.; Zhang, L.; Mukherjee, D.; Zheng, Y.X.; Haislmaier, R.C.; Alem, N.; Engel-Herbert, R. Wafer-scale growth of VO2 thin films using a combinatorial approach. Nat. Commun. 2015, 6, 8475. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chisholm, M.F.; Yang, T.H.; Pennycook, S.J.; Narayan, J. Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 2011, 110, 073515. [Google Scholar] [CrossRef]
- Jeong, J.; Aetukuri, N.; Graf, T.; Schladt, T.D.; Samant, M.G.; Parkin, S.S. Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 2013, 339, 1402–1405. [Google Scholar] [CrossRef] [PubMed]
- Sovero, E.; Deakin, D.; Higgins, J.A.; DeNatale, J.F.; Pittman, S. Fast thin film vanadium dioxide microwave switches. In Proceedings of the Gallium Arsenide Integrated Circuit (GaAs IC) Symposium on Technical Digest, New Orleans, LA, USA, 7–10 October 1990; pp. 101–103. [Google Scholar]
- Hood, P.J.; DeNatale, J.F. Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films. J. Appl. Phys. 1991, 70, 376–381. [Google Scholar] [CrossRef]
- Kim, H.T.; Chae, B.G.; Youn, D.H.; Maeng, S.L.; Kim, G.; Kang, K.Y.; Lim, Y.S. Mechanism and observation of Mott transition in VO2-based two-and three-terminal devices. New J. Phys. 2004, 6, 52. [Google Scholar] [CrossRef]
- Dragoman, M.; Cismaru, A.; Hartnagel, H.; Plana, R. Reversible metal-semiconductor transitions for microwave switching applications. Appl. Phys. Lett. 2006, 88, 073503. [Google Scholar] [CrossRef]
- Dumas-Bouchiat, F.; Champeaux, C.; Catherinot, A.; Crunteanu, A.; Blondy, P. rf-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition. Appl. Phys. Lett. 2007, 91, 223505. [Google Scholar] [CrossRef]
- Garry, G.; Durand, O.; Lordereau, A. Structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R-and C-sapphire planes. Thin Solid Films 2004, 453, 427–430. [Google Scholar] [CrossRef]
- Hillman, C.; Stupar, P.A.; Hacker, J.B.; Griffith, Z.; Field, M.; Rodwell, M. An ultra-low loss millimeter-wave solid state switch technology based on the metal-insulator-transition of vanadium dioxide. In Proceedings of the Microwave Symposium (IMS), 2014 IEEE MTT-S International 2014, Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Pan, K.; Wang, W.; Shin, E.; Freeman, K.; Subramanyam, G. Vanadium oxide thin-film variable resistor-based RF switches. IEEE Trans. Electron Devices 2015, 62, 2959–2965. [Google Scholar] [CrossRef]
- Barker, A.S., Jr.; Verleur, H.W.; Guggenheim, H.J. Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 1966, 17, 1286. [Google Scholar] [CrossRef]
- Maurer, D.; Leue, A. Investigation of transition metal oxides by ultrasonic microscopy. Mater. Sci. Eng. A 2004, 370, 440–443. [Google Scholar] [CrossRef]
- Aetukuri, N.B.; Gray, A.X.; Drouard, M.; Cossale, M.; Gao, L.; Reid, A.H.; Kukreja, R.; Ohldag, H.; Jenkins, C.A.; Arenholz, E.; et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 2013, 9, 661. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Cho, S.J.; Seo, J.H.; Liu, D.; Eom, C.B.; Ma, Z. Epitaxial VO2 thin film-based radio-frequency switches with thermal activation. Appl. Phys. Lett. 2017, 111, 063110. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Song, K.; Xue, F.; Choi, S.Y.; Ma, Y.; Podkaminer, J.; Liu, D.; Liu, S.C.; Chung, B.; et al. Sharpened VO2 phase transition via controlled release of epitaxial strain. Nano Lett. 2017, 17, 5614–5619. [Google Scholar] [CrossRef] [PubMed]
- Quackenbush, N.F.; Paik, H.; Wahila, M.J.; Sallis, S.; Holtz, M.E.; Huang, X.; Ganose, A.; Morgan, B.J.; Scanlon, D.O.; Gu, Y.; et al. Stability of the M2 phase of vanadium dioxide induced by coherent epitaxial strain. Phys. Rev. B 2016, 94, 085105. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, B.J.; Choi, S.; Chae, B.G.; Lee, Y.W.; Driscoll, T.; Qazilbash, M.M.; Basov, D.N. Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. 2010, 107, 023702. [Google Scholar] [CrossRef]
- Crunteanu, A.; Givernaud, J.; Leroy, J.; Mardivirin, D.; Champeaux, C.; Orlianges, J.C.; Catherinot, A.; Blondy, P. Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: A lifetime operation analysis. Sci. Technol. Adv. Mater. 2010, 11, 065002. [Google Scholar] [CrossRef] [PubMed]
- Guzman, G.; Beteille, F.; Morineau, R.; Livage, J. Electrical switching in VO2 sol–gel films. J. Mater. Chem. 1996, 6, 505–506. [Google Scholar] [CrossRef]
- Ilinski, A.; Silva-Andrade, F.; Shadrin, E.; Klimov, V. Variations in optical reflectivity in the semiconductor–metal phase transition of vanadium dioxide. J. Non-crystalline Solids 2004, 338, 266–268. [Google Scholar] [CrossRef]
- Sakai, J. High-efficiency voltage oscillation in VO2 planer-type junctions with infinite negative differential resistance. J. Appl. Phys. 2008, 103, 103708. [Google Scholar] [CrossRef]
- Leroy, J.; Crunteanu, A.; Bessaudou, A.; Cosset, F.; Champeaux, C.; Orlianges, J.C. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. 2012, 100, 213507. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Ko, C.; Yang, Z.; Mouli, C.; Ramanathan, S. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. 2013, 34, 220–222. [Google Scholar] [CrossRef]
- Ko, C.; Ramanathan, S. Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry. Appl. Phys. Lett. 2008, 93, 252101. [Google Scholar] [CrossRef]
- Chae, B.G.; Kim, H.T.; Youn, D.H.; Kang, K.Y. Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse. Phys. B Condens. Matter 2005, 369, 76–80. [Google Scholar] [CrossRef]
- Madan, H.; Zhang, H.T.; Jerry, M.; Mukherjee, D.; Alem, N.; Engel-Herbert, R.; Datta, S. 26.5 Terahertz electrically triggered RF switch on epitaxial VO2-on-Sapphire (VOS) wafer. In Proceedings of the Electron Devices Meeting (IEDM), 2015 IEEE International 2015, Washington, DC, USA, 7–9 December 2015; pp. 3–9. [Google Scholar]
- Basu, A.; Adams, G.G.; McGruer, N.E. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches. J. Micromech. Microeng. 2016, 26, 104004. [Google Scholar] [CrossRef]
- Basu, A. An Experimental Investigation of Hot Switching Contact Damage in RF MEMS Switches. Ph.D. Thesis, Northeastern University, Boston, MA, USA, 2013. [Google Scholar]
- Patel, C.D.; Rebeiz, G.M. A high power (>5 W) temperature stable RF MEMS metal-contact switch with orthogonal anchors and force-enhancing stoppers. In Proceedings of the Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International 2011, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Chan, R.; Lesnick, R.; Becher, D.; Feng, M. Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J. Microelectromech. Syst. 2003, 12, 713–719. [Google Scholar] [CrossRef]
- Burkhardt, W.; Christmann, T.; Meyer, B.K.; Niessner, W.; Schalch, D.; Scharmann, A. W-and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films 1999, 345, 229–235. [Google Scholar] [CrossRef]
- Muraoka, Y.; Hiroi, Z. Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates. Appl. Phys. Lett. 2002, 80, 583–585. [Google Scholar] [CrossRef]
- Ha, S.D.; Zhou, Y.; Fisher, C.J.; Ramanathan, S.; Treadway, J.P. Abrupt Insertion Loss Drop by RF-Triggering of the Phase Transition in VO2 CPW Switches. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 575–577. [Google Scholar] [CrossRef]
- Givernaud, J.; Crunteanu, A.; Orlianges, J.C.; Pothier, A.; Champeaux, C.; Catherinot, A.; Blondy, P. Microwave power limiting devices based on the semiconductor–metal transition in vanadium–dioxide thin films. IEEE Trans. Microw. Theory Tech. 2010, 58, 2352–2361. [Google Scholar] [CrossRef]
- Givernaud, J.; Crunteanu, A.; Pothier, A.; Champeaux, C.; Catherinot, A.; Blondy, P. CPW self-resetting power limiting devices based on microwave power induced semiconductor-metal transition in vanadium dioxide. In Proceedings of the Microwave Symposium Digest, 2009. MTT’09. IEEE MTT-S International 2009, Boston, MA, USA, 7–12 June 2009; pp. 109–112. [Google Scholar]
Performance Parameters | GeTe | VO2 | MEMS |
---|---|---|---|
Favorable Growth Process | Sputtering/PLD | PLD/Sputtering | Standard MEMS process |
ON Resistance (Ω) | 0.6 [25] (series) | 1 (shunt) 6 (Series) [67,79] | <1 [80] |
COFF (fF) | 5.4 [33] | 6 [47] | 2–10 [80] |
Figures of Merit (FOM) (THz) | 17 [33] | 18 [67] | 10–20 [81] |
Insertion Loss (dB) | 0.1 [30] | 0.7 [61] | 0.2 [82] |
Isolation (dB) | 30 [30] | 40 [67] | 25 [83] |
Switching Speed | 20 μs [25] | 25 ns [79] | 25 μs [83] |
Reliability | 10,000 [27] | 260 M [47] | |
Power Handling Capability | 3 W [30] | 2 W [47] | 5 W [82] |
Length | 800 nm–5 µm [23,24,25,26,27,28,29,30,31,32,33] | 100 nm–500 µm [47,61,67,79] | 150 µm [83] |
OFF/ON Resistance Ratio | ~103–106 [23,24,25,26,27,28,29,30,31,32,33] | ~103–105 [47,61,67,79] | Extremely High |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahanta, P.; Munna, M.; Coutu, R.A., Jr. Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications. Technologies 2018, 6, 48. https://doi.org/10.3390/technologies6020048
Mahanta P, Munna M, Coutu RA Jr. Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications. Technologies. 2018; 6(2):48. https://doi.org/10.3390/technologies6020048
Chicago/Turabian StyleMahanta, Protap, Mohiuddin Munna, and Ronald A. Coutu, Jr. 2018. "Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications" Technologies 6, no. 2: 48. https://doi.org/10.3390/technologies6020048
APA StyleMahanta, P., Munna, M., & Coutu, R. A., Jr. (2018). Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications. Technologies, 6(2), 48. https://doi.org/10.3390/technologies6020048