Nematic Liquid Crystal Composite Materials for DC and RF Switching
Abstract
:1. Introduction
2. Electric-Field-Driven Conductivity Modulation in Pure Liquid Crystal Materials
3. Electrical Conductivity of Liquid Crystal and Carbon Nanotube Composites
3.1. Review on Condutivity Behavior of LC-CNT Dispersions
3.2. Field-Induced Reorientation of CNT in LC Matrices and Conductivity Modulation
3.3. Local Heating and Phase Transition during Switching
3.4. Field Induced Conductivity Modulation in Isotropic Phase: π–π Staking
3.5. Field-Induced Conductivity Modulation in Isotropic Phase: In-Plane Switching
3.6. Dual Frequency Switching
4. Field-Induced Conductivity Enhancement in Metal Nanoparticle and Liquid Crystal Composite
5. Performance Comparison among Different Composite Systems
6. Design and Simulation of LC-CNT-Based RF Devices
7. Discussion
- (a)
- Microfabrication and alignment: Most of the reported work on field-induced switching is done on conventional LC-sandwiched cells made of ITO-coated glass. These are macroscale devices and are easy to fabricate. According to our simulation results, to meet the RF switching requirement, devices need to be scaled down to microscale. However, in microscale, electrode deposition and making an alignment layer is a challenge. However, there are some works on the microfabrication of LC-based devices. For example, Garbovskiy et al. demonstrated an LC phase shifter using inverted microstrip line configuration [107]. Lai et al. described a fabrication technique for an in-plane LC-CNT-based device made of interdigitated electrodes for gas sensing application [108]. Varanytsia et al. used photolithography-patterned graphene electrodes instead of ITO for a better optical transmission characteristic of LC devices. Besides fabrication complexity in microscale, making alignment layers could be challenging. However, some groups demonstrated alignment LC in microscale. Varghese et al. described a micro-rubbing technique for LC alignment [109]. Nano-imprint lithography could be used for patterned alignments in microscale [110,111,112]. Photo-induced alignment is another option for patterned alignments in microscale. Along with these, a few other micro-patterning techniques are also reported [113,114].
- (b)
- (c)
- Reversible switching will be a challenge as LC-CNT composites show the memory effect. Considering this issue, DFNLC is a good option, but in this case, the switching ratio is only 170 as reported by Prasad et al [84]. An in-plane cross-electrode configuration [70] is a viable solution, but this will bring additional fabrication complexity. In addition to this, repeatable measurement behavior is also desired.
- (d)
- In most of the reported works, an AC electric field is applied for switching to avoid ion migration during switching. For DC switching, the materials need to be ion-free.
- (e)
- During conductivity switching, Joule heating may occur, which drives the system from a nematic to isotropic phase [20,53]. If the sample is subjected to heating for a long time, chemical degradation may occur. To prevent this, the system should be operated in constant current mode. Another way to prevent the phase changing is to keep the system in a constant temperature using a feedback system.
- (f)
- To design an efficient switch, dynamical and transient behaviors need to be studied. However. there are few reports on the dynamical switching behavior. From the work of D. Volpati et al., it seems the switching can take place within a few seconds [70]. Shah et al. observed the field-induced isotropic bubble formation around the CNT bundles within a second [53]. Heilmeier et al. demonstrated that switching occurs within 1–5 ms [24].
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Res. 1997, 27, 305–379. [Google Scholar] [CrossRef]
- Kelly, S.M.; O’Neill, M. Liquid crystals for electro-optic applications. In Handbook of Advanced Electronic and Photonic Materials and Devices; Academic Press: Cambridge, MA, USA, 2001; pp. 1–66. [Google Scholar] [CrossRef]
- Dierking, I. Chiral liquid crystals: Structures, phases, effects. Symmetry 2014, 6, 444–472. [Google Scholar] [CrossRef]
- Brown, G.H. Structure, properties, and some applications of liquid crystals. JOSA 1973, 63, 1505–1514. [Google Scholar] [CrossRef]
- Haas, W.E. Liquid Crystal Display Research: The First Fifteen Years. Mol. Cryst. Liq. Cryst. 1983, 94, 1–31. [Google Scholar] [CrossRef]
- Lagerwall, J.P.; Scalia, G. Liquid Crystals with Nano and Microparticles; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in gold nanoparticle–Liquid crystal composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, I. Nano-objects and ions in liquid crystals: Ion trapping effect and related phenomena. Crystals 2015, 5, 501–533. [Google Scholar] [CrossRef]
- Haraguchi, F.; Inoue, K.I.; Toshima, N.; Kobayashi, S.; Takatoh, K. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. Jpn. J. Appl. Phys. 2007, 46, L796. [Google Scholar] [CrossRef]
- Khatua, S.; Manna, P.; Chang, W.S.; Tcherniak, A.; Friedlander, E.; Zubarev, E.R.; Link, S. Plasmonic nanoparticles− liquid crystal composites. J. Phys. Chem. C 2009, 114, 7251–7257. [Google Scholar] [CrossRef]
- Sridevi, S.; Prasad, S.K.; Nair, G.G.; D’Britto, V.; Prasad, B.L.V. Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system. Appl. Phys. Lett. 2010, 97, 151913. [Google Scholar] [CrossRef]
- Vardanyan, K.K.; Walton, R.D.; Bubb, D.M. Liquid crystal composites with a high percentage of gold nanoparticles. Liq. Cryst. 2011, 38, 1279–1287. [Google Scholar] [CrossRef]
- Reznikov, Y.; Buchnev, O.; Tereshchenko, O.; Reshetnyak, V.; Glushchenko, A.; West, J. Ferroelectric nematic suspension. Appl. Phys. Lett. 2003, 82, 1917–1919. [Google Scholar] [CrossRef]
- Lynch, M.D.; Patrick, D.L. Organizing carbon nanotubes with liquid crystals. Nano Lett. 2002, 2, 1197–1201. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Aligning and reorienting carbon nanotubes with nematic liquid crystals. Adv. Mater. 2004, 16, 865–869. [Google Scholar] [CrossRef]
- Lee, W.; Yeh, S.L. Optical amplification in nematics doped with carbon nanotubes. Appl. Phys. Lett. 2001, 79, 4488–4490. [Google Scholar] [CrossRef]
- Russell, J.M.; Oh, S.; LaRue, I.; Zhou, O.; Samulski, E.T. Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Film. 2006, 509, 53–57. [Google Scholar] [CrossRef]
- Lagerwall, J.; Scalia, G. Carbon nanotubes in liquid crystals. In Handbook of Liquid Crystals; Wiley: Hoboken, NJ, USA, 2014; pp. 1–40. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P. Liquid crystal–Carbon nanotube dispersions. J. Appl. Phys. 2005, 97, 044309. [Google Scholar] [CrossRef]
- Jayalakshmi, V.; Prasad, S.K. Understanding the observation of large electrical conductivity in liquid crystal-carbon nanotube composites. Appl. Phys. Lett. 2009, 94, 202106. [Google Scholar] [CrossRef]
- Schadt, M. Dielectric properties of some nematic liquid crystals with strong positive dielectric anisotropy. J. Chem. Phys. 1972, 56, 1494–1497. [Google Scholar] [CrossRef]
- Schadt, M. Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects. Mol. Cryst. Liq. Cryst. 1982, 89, 77–92. [Google Scholar] [CrossRef]
- Guralnik, I.R.; Belopukhov, V.N.; Love, G.D.; Naumov, A.F. Interdependence of the electrical and optical properties of liquid crystals for phase modulation applications. J. Appl. Phys. 2000, 87, 4069–4074. [Google Scholar] [CrossRef]
- Heilmeier, G.H.; Zanoni, L.A. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett. 1968, 13, 91–92. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Li, W.Z.; Wang, D.Z.; Ren, Z.F.; Chou, T.W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; De Heer, W.A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Tans, S.J.; Verschueren, A.R.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Y.; Wang, C.; Chen, P.C.; Liu, Z.; Wei, W.; Zhou, C. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858. [Google Scholar] [CrossRef]
- Munna, M.; Das, P.; Huq, M.F.; Ahmed, I. Study on the On/ Off Ratio of the Cylindrical Surrounding Gate CNT Transistor Using Nonequlibrium Green’s Function Approach. J. Sci. Res. 2015, 7, 11–21. [Google Scholar] [CrossRef]
- Mahanta, P.K.; Adhikari, P.; Rocky, K.A. Skin effect analysis for carbon nano-material based interconnects at high frequency. In Proceedings of the 2013 2nd International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 17–18 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Hassan, A.; Nandy, T.; Abedin, M.I.; Islam, M.A.; Dutta, A. Resonant frequency analysis of graphene nanoribbon based VLSI interconnect system. In Proceedings of the 2014 8th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 20–22 December 2014; pp. 156–159. [Google Scholar] [CrossRef]
- Nandy, T.; Coutu, R.; Ababei, C. Carbon Monoxide Sensing Technologies for Next-Generation Cyber-Physical Systems. Sensors 2018, 18, 3443. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P.M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171. [Google Scholar] [CrossRef] [PubMed]
- Zakri, C. Carbon nanotubes and liquid crystalline phases. Liq. Cryst. Today 2007, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Lee, W.; Clark, N.A. Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl. Phys. Lett. 2007, 90, 033510. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Shin, S.H.; Jeong, S.J.; Lee, S.H.; Jeong, S.H.; Lee, Y.H.; Kim, K.J. Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field. Appl. Phys. Lett. 2007, 90, 121901. [Google Scholar] [CrossRef]
- Baik, I.S.; Jeon, S.Y.; Jeong, S.J.; Lee, S.H.; An, K.H.; Jeong, S.H.; Lee, Y.H. Local deformation of liquid crystal director induced by translational motion of carbon nanotubes under in-plane field. J. Appl. Phys. 2006, 100, 074306. [Google Scholar] [CrossRef]
- Lebovka, N.; Dadakova, T.; Lysetskiy, L.; Melezhyk, O.; Puchkovska, G.; Gavrilko, T.; Baran, J.; Drozd, M. Phase transitions, intermolecular interactions and electrical conductivity behavior in carbon multiwalled nanotubes/nematic liquid crystal composites. J. Mol. Struct. 2008, 887, 135–143. [Google Scholar] [CrossRef]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Vasil’ev, V.I.; Lebovka, N.I.; Soskin, M.S. Cluster self-organization of nanotubes in a nematic phase: The percolation behavior and appearance of optical singularities. JETP Lett. 2010, 91, 241–244. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Lebovka, N.I.; Sidletskiy, O.T.; Panikarskaya, V.D.; Kasian, N.A.; Kositsyn, S.S.; Melezhyk, O.V. Spectrophotometry and electrical conductivity studies of multiwall nanotubes dispersed in nematic liquid crystals. Funct. Mater. 2007, 14, 233–237. [Google Scholar]
- Goncharuk, A.I.; Lebovka, N.I.; Lisetski, L.N.; Minenko, S.S. Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes. J. Phys. D Appl. Phys. 2009, 42, 165411. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Tarafdar, S.; Vygornitskii, N.V. Computer simulation of electrical conductivity of colloidal dispersions during aggregation. Phys. Rev. E 2006, 73, 031402. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Amer, N.M. Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals. Phys. Rev. Lett. 1983, 51, 2298. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. On the orientation of an anisometric particle suspended in a bulk uniform nematic. Phys. Lett. A 1990, 149, 279–283. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. Orientation of a solid particle embedded in a monodomain nematic liquid crystal. Phys. Rev. E 1994, 50, 358. [Google Scholar] [CrossRef]
- Polson, J.M.; Burnell, E.E. Monte Carlo simulations of solute ordering in nematic liquid crystals: Shape anisotropy and quadrupole-quadrupole interactions as orienting mechanisms. Phys. Rev. E 1997, 55, 4321. [Google Scholar] [CrossRef]
- Harte, A. Liquid crystals allow large-scale alignment of carbon nanotubes. Caltech Undergrad. Res. J. (CURJ) 2001, 1, 44–49. Available online: http://curj.caltech.edu/documents/17-curj_v1n2.pdf (accessed on 25 November 2018).
- Prasad, S.K.; Sandhya, K.L.; Nair, G.G.; Hiremath, U.S.; Yelamaggad, C.V.; Sampath, S. Electrical conductivity and dielectric constant measurements of liquid crystal–gold nanoparticle composites. Liq. Cryst. 2006, 33, 1121–1125. [Google Scholar] [CrossRef]
- Yoshida, H.; Kawamoto, K.; Kubo, H.; Tsuda, T.; Fujii, A.; Kuwabata, S.; Ozaki, M. Nanoparticle-Dispersed Liquid Crystals Fabricated by Sputter Doping. Adv. Mater. 2010, 22, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Shiraishi, Y.; Kobayashi, S.; Toshima, N. Fabrication of Liquid Crystal Sol Containing Capped Ag− Pd Bimetallic Nanoparticles and Their Electro-Optic Properties. J. Phys. Chem. C 2008, 112, 20284–20290. [Google Scholar] [CrossRef]
- Duran, H.; Gazdecki, B.; Yamashita, A.; Kyu, T. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liq. Cryst. 2005, 32, 815–821. [Google Scholar] [CrossRef]
- Shah, H.J.; Fontecchio, A.K.; Mattia, D.; Gogotsi, Y. Field controlled nematic-to-isotropic phase transition in liquid crystal–carbon nanotube composites. J. Appl. Phys. 2008, 103, 064314. [Google Scholar] [CrossRef]
- Baik, I.S.; Jeon, S.Y.; Lee, S.H.; Park, K.A.; Jeong, S.H.; An, K.H.; Lee, Y.H. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl. Phys. Lett. 2005, 87, 263110. [Google Scholar] [CrossRef]
- Singh-Bhalla, G.; Du, X.; Hebard, A.F. Contribution of interface capacitance to the electric-field breakdown in thin-film Al–AlO x–Al capacitors. Appl. Phys. Lett. 2003, 83, 2417–2419. [Google Scholar] [CrossRef]
- Yin, Y.; Shiyanovskii, S.V.; Lavrentovich, O.D. Electric heating effects in nematic liquid crystals. J. Appl. Phys. 2006, 100, 024906. [Google Scholar] [CrossRef]
- Basu, R.; Alfred, G. Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites. J. Appl. Phys. 2016, 120, 164309. [Google Scholar] [CrossRef]
- Scalia, G.; Lagerwall, J.P.; Haluska, M.; Dettlaff-Weglikowska, U.; Giesselmann, F.; Roth, S. Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by Raman spectroscopy. Phys. Status Solidi (b) 2006, 243, 3238–3241. [Google Scholar] [CrossRef]
- Park, K.A.; Lee, S.M.; Lee, S.H.; Lee, Y.H. Anchoring a liquid crystal molecule on a single-walled carbon nanotube. J. Phys. Chem. C 2007, 111, 1620–1624. [Google Scholar] [CrossRef]
- Basu, R. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal. Appl. Phys. Lett. 2014, 105, 112905. [Google Scholar] [CrossRef]
- Basu, R.; Garvey, A.; Kinnamon, D. Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J. Appl. Phys. 2015, 117, 074301. [Google Scholar] [CrossRef]
- Basu, R.; Kinnamon, D.; Garvey, A. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal. Appl. Phys. Lett 2015, 106, 201909. [Google Scholar] [CrossRef]
- Glushchenko, A.; Kresse, H.; Reshetnyak, V.; Reznikov, Y.; Yaroshchuk, O. Memory effect in filled nematic liquid crystals. Liq. Cryst. 1997, 23, 241–246. [Google Scholar] [CrossRef]
- Dolgov, L.; Yaroshchuk, O.; Lebovka, M. Effect of electro-optical memory in liquid crystals doped with carbon nanotubes. Mol. Cryst. Liq. Cryst. 2008, 496, 212–229. [Google Scholar] [CrossRef]
- Basu, R.; Iannacchione, G.S. Carbon nanotube dispersed liquid crystal: A nano electromechanical system. Appl. Phys. Lett. 2008, 93, 183105. [Google Scholar] [CrossRef]
- Kiefer, R.; Weber, B.; Windscheid, F.; Baur, G. In-plane switching of nematic liquid crystals. In Proceedings of the 12th International Display Research Conference (Japan Displays), Hiroshima, Japan, 12–14 Octber 1992; p. 547. [Google Scholar]
- Soref, R.A. Field effects in nematic liquid crystals obtained with interdigital electrodes. J. Appl. Phys. 1974, 45, 5466–5468. [Google Scholar] [CrossRef]
- Oh-e, M.; Kondo, K. Electro-optical characteristics and switching behavior of the in-plane switching mode. Appl. Phys. Lett. 1995, 67, 3895–3897. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.L.; Kim, H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. Lett. 1998, 73, 2881–2883. [Google Scholar] [CrossRef]
- Volpati, D.; Massey, M.K.; Johnson, D.W.; Kotsialos, A.; Qaiser, F.; Pearson, C.; Coleman, K.S.; Tiburzi, G.; Zeze, D.A.; Petty, M.C. Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes. J. Appl. Phys. 2015, 117, 125303. [Google Scholar] [CrossRef] [Green Version]
- Basu, R. Effect of carbon nanotubes on the field-induced nematic switching. Appl. Phys. Lett. 2013, 103, 241906. [Google Scholar] [CrossRef]
- Lee, W.K.; Choi, Y.S.; Kang, Y.G.; Sung, J.; Seo, D.S.; Park, C. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv. Funct. Mater. 2011, 21, 3843–3850. [Google Scholar] [CrossRef]
- Liu, Y.; Lim, Y.J.; Kundu, S.; Lee, S.H.; Lee, G.D. Super-fast switching of twisted nematic liquid crystals with a single-wall-carbon-nanotube-doped alignment layer. J. Korean Phys. Soc. 2015, 66, 952–958. [Google Scholar] [CrossRef]
- Hsiao, Y.C.; Tang, C.Y.; Lee, W. Fast-switching bistable cholesteric intensity modulator. Opt. Express 2011, 19, 9744–9749. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, Y.; Wu, S.T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. Opt. Lett. 2011, 36, 1404–1406. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Kouwer, P.H.J.; Rowan, A.E.; Rasing, T. Sub-millisecond nematic liquid crystal switches using patterned command layer. J. Appl. Phys. 2013, 113, 014503. [Google Scholar] [CrossRef] [Green Version]
- Xianyu, H.; Gauza, S.; Wu, S.T. Sub-millisecond response phase modulator using a low crossover frequency dual-frequency liquid crystal. Liq. Cryst. 2008, 35, 1409–1413. [Google Scholar] [CrossRef]
- Kumar, P.; Kang, S.-W.; Lee, S.H. Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Opt. Mater. Express 2.8 2012, 2, 1121–1134. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Celiński, M.; Chojnowska, O.; Kula, P.; Dziaduszek, J.; Urban, S. Compounds with low relaxation frequency and dual frequency mixtures useful for active matrix addressing. Liq. Cryst. 2013, 40, 1339–1353. [Google Scholar] [CrossRef]
- Lin, X.W.; Hu, W.; Hu, X.K.; Liang, X.; Chen, Y.; Cui, H.Q.; Lu, Y.Q. Fast response dual-frequency liquid crystal switch with photo-patterned alignments. Opt. Lett. 2012, 37, 3627–3629. [Google Scholar] [CrossRef] [PubMed]
- Mrukiewicz, M.; Perkowski, P.; Garbat, K.; Dąbrowski, R. Molecular relaxations in dual-frequency nematic liquid crystals. Liq. Cryst. 2014, 41, 1537–1544. [Google Scholar] [CrossRef]
- Xianyu, H.; Wu, S.T.; Lin, C.L. Dual frequency liquid crystals: A review. Liq. Cryst. 2009, 36, 717–726. [Google Scholar] [CrossRef]
- Pauluth, D.; Tarumi, K. Advanced liquid crystals for television. J. Mater. Chem. 2004, 14, 1219–1227. [Google Scholar] [CrossRef]
- Prasad, S.K.; Kumar, M.V.; Yelamaggad, C.V. Dual frequency conductivity switching in a carbon nanotube/liquid crystal composite. Carbon 2013, 59, 512–517. [Google Scholar] [CrossRef]
- Brust, M.; Kiely, C.J. Some recent advances in nanostructure preparation from gold and silver particles: A short topical review. Colloids Surf. A Physicochem. Eng. Asp. 2002, 202, 175–186. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.A.; Obare, S.O.; Johnson, C.J.; Edler, K.J.; Mann, S.; Murphy, C.J. Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 2002, 12, 2909–2912. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Sönnichsen, C.; Von Poschinger, H.; Von Plessen, G.; Klar, T.A.; Feldmann, J. Electrically controlled light scattering with single metal nanoparticles. Appl. Phys. Lett. 2002, 81, 171–173. [Google Scholar] [CrossRef]
- Kossyrev, P.A.; Yin, A.; Cloutier, S.G.; Cardimona, D.A.; Huang, D.; Alsing, P.M.; Xu, J.M. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005, 5, 1978–1981. [Google Scholar] [CrossRef] [PubMed]
- Van Delden, R.A.; Van Gelder, M.B.; Huck, N.P.; Feringa, B.L. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant. Adv. Funct. Mater. 2003, 13, 319–324. [Google Scholar] [CrossRef]
- Kumar, S.; Lakshminarayanan, V. Inclusion of gold nanoparticles into a discotic liquid crystalline matrix. Chem. Commun. 2004, 1600–1601. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K.; Lakshminarayanan, V. Discotic-decorated gold nanoparticles. Mol. Cryst. Liq. Cryst. 2005, 434, 251–579. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K.; Kumar, P.S.; Lakshminarayanan, V. Novel conducting nanocomposites: Synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter 2007, 3, 896–900. [Google Scholar] [CrossRef]
- Holt, L.A.; Bushby, R.J.; Evans, S.D.; Burgess, A.; Seeley, G. A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1% (w/w) gold nanoparticles. J. Appl. Phys. 2008, 103, 063712. [Google Scholar] [CrossRef]
- Velev, O.D.; Bhatt, K.H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738–750. [Google Scholar] [CrossRef]
- Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 2005, 17, 2553–2559. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zeng, H.C. Template-free parallel one-dimensional assembly of gold nanoparticles. J. Phys. Chem. B 2006, 110, 16812–16815. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Iannacchione, G.S. Evidence for directed self-assembly of quantum dots in a nematic liquid crystal. Phys. Rev. E 2009, 80, 010701. [Google Scholar] [CrossRef] [PubMed]
- Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659. [Google Scholar] [CrossRef]
- Hadjichristov, G.B.; Marinov, Y.G.; Petrov, A.G.; Marino, L.; Scaramuzza, N. Dielectric and electrical characterization of 5CB nematic liquid crystal doped with silver nanoparticles. J. Phys. Conf. Ser. 2016, 682, 12015. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.S.; Dhar, R.; Kumar, S.; Dabrowski, R. Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalized gold nano particles. Liq. Cryst. 2011, 38, 115–120. [Google Scholar] [CrossRef]
- Simone, R.; Daniele, L.; Matthias, W.; Ilya, K. Phase change materials. MRS Bull. 2012, 37, 118–123. [Google Scholar] [CrossRef]
- Mahanta, P.; Munna, M.; Coutu, R.A., Jr. Performance Comparison of Phase Change Materials and Metal-Insulator Transition Materials for Direct Current and Radio Frequency Switching Applications. Technologies 2018, 6, 48. [Google Scholar] [CrossRef]
- Mahanta, P.; Anwar, F.; Coutu, R.A. Novel Test Fixture for Characterizing MEMS Switch Microcontact Reliability and Performance. Sensors 2019, 19, 579. [Google Scholar] [CrossRef] [PubMed]
- Stefanovich, G.; Pergament, A.; Stefanovich, D. Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter 2000, 12, 8837. [Google Scholar] [CrossRef]
- Yang, Z.; Changhyun, K.; Shriram, R. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367. [Google Scholar] [CrossRef]
- Canli, N.Y.; Özdemir, Z.G.; Okutan, M.; Güzeller, D.; Ocak, H.; Eran, B.B. Dielectric Properties of 4-Cyano-4′-pentylbiphenyl (5CB): 4-[4-(S)-2-Methylbutoxybenzoyloxy] benzoic Acid (BAC) Composite. Mol. Cryst. Liq. Cryst. 2015, 623, 17–30. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Zagorodnii, V.; Krivosik, P.; Lovejoy, J.; Camley, R.E.; Celinski, Z.; Dąbrowski, R. Liquid crystal phase shifters at millimeter wave frequencies. J. Appl. Phys. 2012, 111, 054504. [Google Scholar] [CrossRef]
- Lai, Y.T.; Kuo, J.C.; Yang, Y.J. A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators A Phys. 2014, 215, 83–88. [Google Scholar] [CrossRef]
- Varghese, S.; Narayanankutty, S.; Bastiaansen, C.W.; Crawford, G.P.; Broer, D.J. Patterned Alignment of Liquid Crystals by μ-Rubbing. Adv. Mater. 2004, 16, 1600–1605. [Google Scholar] [CrossRef]
- Park, S.; Padeste, C.; Schift, H.; Gobrecht, J.; Scharf, T. Chemical nanopatterns via nanoimprint lithography for simultaneous control over azimuthal and polar alignment of liquid crystals. Adv. Mater. 2005, 17, 1398–1401. [Google Scholar] [CrossRef]
- Chiu, C.H.; Kuo, H.L.; Chen, P.C.; Wen, C.H.; Liu, Y.C.; Chen, H.M.P. Nanoimprinting-lithography-induced self-aligned liquid crystals for novel multifunctional optical films. Appl. Phys. Lett. 2006, 88, 073509. [Google Scholar] [CrossRef]
- Lin, T.C.; Yu, S.C.; Chen, P.S.; Chi, K.Y.; Pan, H.C.; Chao, C.Y. Fabrication of alignment layer free flexible liquid crystal cells using thermal nanoimprint lithography. Curr. Appl. Phys. 2009, 9, 610–612. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoneya, M.; Yokoyama, H. Tristable nematic liquid-crystal device using micropatterned surface alignment. Nature 2002, 420, 159. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.; Rybak, A.; Dobrovolskiy, A.; Kadan, V.; Blonskiy, I.; Ilday, F.Ö.; Gvozdovskyy, I. The alignment of nematic liquid crystal by the Ti layer processed by nonlinear laser lithography. Liq. Cryst. 2018, 45, 1265–1271. [Google Scholar] [CrossRef] [Green Version]
- Premkumar, T.; Mezzenga, R.; Geckeler, K.E. Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 2012, 8, 1299–1313. [Google Scholar] [CrossRef]
- Schymura, S.; Kühnast, M.; Lutz, V.; Jagiella, S.; Dettlaff-Weglikowska, U.; Roth, S.; Frank, G.; Carsten, T.; Giusy, S.; Lagerwall, J. Towards efficient dispersion of carbon nanotubes in thermotropic liquid crystals. Adv. Funct. Mater. 2010, 20, 3350–3357. [Google Scholar] [CrossRef]
Composite | Concentration of NPs | Operating Temperature/Phase | Resistivity Ratio | Mechanism of Conductivity Modulation | Reference |
---|---|---|---|---|---|
E7/CNT | 0.05 wt.% | Near RT, Nematic phase | 103 to 104 | Elastic interaction, reorientation | Jayalakshmi et al. [20] |
5CB/CNT | 0.005 wt.% | 40 °C, Isotropic phase | 5 × 103 | π–π staking, PND reorientation | Basu et al. [57] |
PCPBB/CNT | 0.00036 vol% | 42 °C Nematic phase | 170 | Dual frequency switching | Prasad et al. [84] |
HAT6/GNP | 1.0 wt.% | 105 °C Isotropic phase | 103 to 104 | Electrophoresis of GNPs | Holt et al. [93] |
5CB/Ag NPs | 0.5 wt.% | Room temperature | >102 | Self-assembly, reorientation | Hadjichristov et al. [99] |
RON (Ω) | COFF (pF) | Insertion loss at 10 GHz (dB) | Isolation at 10 GHz (dB) | Return loss at 10 GHz (dB) |
---|---|---|---|---|
50 | 0.5 | 5.7 | 6 | 31 |
20 | 0.5 | 3 | No data | 38.6 |
5 | 0.5 | 0.96 | No data | 60.9 |
5 | 0.05 | 0.95 | 30 | 61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munna, M.; Anwar, F.; Coutu, R.A., Jr. Nematic Liquid Crystal Composite Materials for DC and RF Switching. Technologies 2019, 7, 32. https://doi.org/10.3390/technologies7020032
Munna M, Anwar F, Coutu RA Jr. Nematic Liquid Crystal Composite Materials for DC and RF Switching. Technologies. 2019; 7(2):32. https://doi.org/10.3390/technologies7020032
Chicago/Turabian StyleMunna, Mohiuddin, Farhana Anwar, and Ronald A. Coutu, Jr. 2019. "Nematic Liquid Crystal Composite Materials for DC and RF Switching" Technologies 7, no. 2: 32. https://doi.org/10.3390/technologies7020032
APA StyleMunna, M., Anwar, F., & Coutu, R. A., Jr. (2019). Nematic Liquid Crystal Composite Materials for DC and RF Switching. Technologies, 7(2), 32. https://doi.org/10.3390/technologies7020032