Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Radical Copolymerization of NIPAM with Comonomers (General Procedure)
- Entry 1: NIPAM = 142 mg (1.25 mmol), AM = 89 mg (1.25 mmol), yield = 201 mg (87%).
- Entry 2: NIPAM = 189 mg (1.67 mmol), AM = 59 mg (0.83 mmol), yield = 204 mg (82%).
- Entry 3: NIPAM = 257 mg (2.27 mmol), AM = 16 mg (0.23 mmol), yield = 209 mg (77%).
- Entry 4: NIPAM = 141 mg (1.25 mmol), DMAM = 84 mg (0.85 mmol), yield = 190 mg (85%).
- Entry 5: NIPAM = 235 mg (2.08 mmol), DMAM = 40 mg (0.42 mmol), yield = 250 mg (91%).
- Entry 6: NIPAM = 257 mg (2.27 mmol), DMAM = 23 mg (0.23 mmol), yield = 263 mg (94%).
2.4. Gelation of Hydrazine Solution by LCST Gelators (General Procedure)
2.5. Release of Hydrazine from Hydrazine Gel by Compression (Typical Procedure)
2.6. Release of Hydrazine from Hydrazine Gel by Heating (Typical Procedure)
3. Results and Discussion
3.1. Phase-Transition Behavior of Aqueous Hydrazine Solution Containing Hydrophilic Polymers
3.2. Release of Aqueous Hydrazine Solution from LCST Gels
3.2.1. Release of Aqueous Hydrazine Solution by Compression
3.2.2. Release of Aqueous Hydrazine Solution by Heating
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McNutt, R.L., Jr.; Solomon, S.C.; Gold, R.E.; Leary, J.C. The MESSENGER Team, The MESSENGER mission to Mercury: Development history and early mission status. Adv. Space Res. 2006, 38, 564–571. [Google Scholar] [CrossRef]
- Leary, J.C.; Conde, R.F.; Dakermanji, G.; Engelbrecht, C.S.; Ercol, C.J.; Fielhauer, K.B.; Grant, D.G.; Hartka, T.J.; Hill, T.A.; Jaskulek, S.E.; et al. The MESSENGER spacecraft. Space Sci. Rev. 2007, 131, 187–217. [Google Scholar] [CrossRef]
- Jain, S.R. Self-igniting Fuel-oxidizer Systems and Hybrid Rockets. J. Sci. Ind. Res. 2003, 62, 293–310. [Google Scholar]
- Lai, K.Y.; Zhu, R.S.; Lin, M.C. Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic? Chem. Phys. Lett. 2012, 537, 33–37. [Google Scholar] [CrossRef]
- Solomon, Y.; DeFini, S.J.; Pourpoint, T.L.; Anderson, W.E. Gelled Monomethyl Hydrazine Hypergolic Droplet Investigation. J. Propul. Power 2013, 29, 79–86. [Google Scholar] [CrossRef]
- Evans, G.E.; Kordesch, K.V. Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory. Science 1967, 158, 1148–1152. [Google Scholar] [CrossRef]
- Meibuhr, S.G. Surface-Catalyzed Anodes for Hydrazine Fuel Cells I. Preparation of the Substrate. J. Electrochem. Soc. 1974, 121, 1264–1270. [Google Scholar] [CrossRef]
- Demirci, U.B. Direct liquid-feed fuel cells: Thermodynamic and environmental concerns. J. Power Sources 2007, 169, 239–246. [Google Scholar] [CrossRef]
- Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. A platinum-free zero-carbon-emission easy fueling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 2007, 46, 8024–8027. [Google Scholar] [CrossRef]
- Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa, H.; Tanaka, H.; Oguro, K. Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells. J. Electrochem. Soc. 2009, 156, B509–B512. [Google Scholar] [CrossRef]
- Serov, A.; Kwak, C. Direct hydrazine fuel cells: A review. Appl. Cat. B Environ. 2010, 98, 1–9. [Google Scholar] [CrossRef]
- Rees, N.; Compton, R. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuel cells. Energy Environ. Sci. 2011, 4, 1255–1260. [Google Scholar] [CrossRef]
- Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. Anion conductive block poly(arylene ether)s: Synthesis, properties, and application in alkaline fuel cells. J. Am. Chem. Soc. 2011, 133, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Sanabria-Chinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc. 2011, 133, 5425–5431. [Google Scholar] [CrossRef] [PubMed]
- Granot, E.; Filanovsky, B.; Presman, I.; Kuras, I.; Patolsky, F. Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes. J. Power Sources 2012, 204, 116–121. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrog. Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Yan, X.; Meng, F.; Xie, Y.; Liu, J.; Ding, Y. Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves. Sci. Rep. 2012, 2, 941. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhong, X.; Dong, Z.; Wang, J.; Jin, J.; Ma, J. A highly active hydrazine fuel cell catalyst consisting of a Ni-Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Adv. 2012, 2, 5038–5040. [Google Scholar] [CrossRef]
- Akbar, K.; Kim, J.; Lee, Z.; Kim, M.; Yi, Y.; Chun, S. Superaerophobic graphene nano-hills for direct hydrazine fuel cells. NPG Asia Mater. 2017, 9, e378. [Google Scholar] [CrossRef]
- Choudhary, G.; Hansen, H. Human health perspective on environmental exposure to hydrazines: A review. Chemosphere 1998, 37, 801–843. [Google Scholar] [CrossRef]
- Ritz, B.; Zhao, Y.; Krishnadasan, A.; Kennedy, N.; Morgenstern, H. Estimated effects of hydrazine exposure on cancer incidence and mortality in aerospace workers. Epidemiology 2006, 17, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.H.; Chong, C.H.; Ng, W.T.; Lim, D. Hydrazine inhalation hepatotoxicity. Occup. Med. 2007, 57, 535–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiyoshi, H.; Kubota, N.; Ayabe, T. A feeding method and a supply device of gelling propellant. JP. Patent No. P4,075,133, 8 February 2008. (In Japanese). Available online: https://www.j-platpat.inpit.go.jp/c1800/PU/JP-4075133/776924ED588A88F70442DB28E6D592C52B7C86A37328570C3C0D33F412B97BAE/15/ja (accessed on 30 July 2020).
- Rahimi, S.; Hasan, D.; Perets, A. Development of laboratory-scale gel-propulsion technology. J. Propuls. Power 2004, 20, 93–100. [Google Scholar] [CrossRef]
- Rahimi, S.; Perets, A.; Natan, B. Rheological Matching of Gel Propellants. J. Propul. Power 2010, 26, 376–379. [Google Scholar] [CrossRef]
- Dennis, J.D.; Kubal, T.D.; Campanella, O.; Son, S.F.; Pourpoint, T.L. Rheological characterization of monomethylhydrazine gels. J. Propul. Power 2013, 29, 313–320. [Google Scholar] [CrossRef]
- Dennis, J.D.; Willits, J.D.; Pourpoint, T.L. Performance of neat and gelled monomethylhydrazine and red fuming nitric acid in an unlike-doublet combustor. Combust. Sci. Technol. 2018, 190, 1141–1157. [Google Scholar] [CrossRef]
- Ochiai, B.; Shimada, Y. Reversible gelation system for hydrazine based on polymer absorbent. Technologies 2018, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D. The Wolff-Kishner Reduction and Related Reactions; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128157275. [Google Scholar]
- Schild, H.G. Poly(N-isopropylacrylamide) -experiment, theory, and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Gil, E.S.; Hudson, S.M. Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [Google Scholar] [CrossRef]
- Qiao, S.; Wang, H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications. NANO Res. 2018, 11, 5400–5423. [Google Scholar] [CrossRef]
- Pelton, R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J. Colloid Interface Sci. 2010, 348, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Gamble, D.S.; Hoffman, I. Photometric analysis of trace amounts of hydrazine with p-dimethylaminobenzaldehyde. Chemical equilibria. Canadian J. Chem. 1967, 45, 2813–2819. [Google Scholar] [CrossRef]
- Barton, A.F.M. Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters; CRC Press: Boca Raton, FL, USA, 1990; ISBN 0-8493-3544-2. [Google Scholar]
Polymer a | PNIPAM | PDMAM | PVP | PAM |
---|---|---|---|---|
Heating (°C) b | −5 | 53 | 59 | None |
Cooling (°C) b | <−10 | 49 | 53 | None |
Entry | Comonomer | Solvent | [NIPAM]0/[Comonomer]0 | Copolymer Composition (NIPAM/Comonomer) a | Yield (%) b | Mn (Mw/Mn) c |
---|---|---|---|---|---|---|
1 | AM | MeOH | 50/50 | 49/51 | 87 | 6300 (1.4) |
2 | AM | MeOH | 67/33 | 56/44 | 82 | 62,700 (2.6) |
3 | AM | MeOH | 91/9 | 80/20 | 77 | 62,200 (3.2) |
4 | DMAM | DOX | 60/40 | 39/61 | 85 | 37,400 (3.2) |
5 | DMAM | DOX | 83/17 | 60/40 | 91 | 46,100 (2.7) |
6 | DMAM | DOX | 91/9 | 75/25 | 93 | 47,800 (3.6) |
Copolymer | Copolymer Composition (NIPAM/Comonomer) a | State at Temperature Higher than Transition Temperature | Transition Temperature (°C) b | |
---|---|---|---|---|
Heating | Cooling | |||
P(NIPAM-co-AM) | 36/61 | Turbid fluid | −1 | −7 |
60/40 | Gel | −1 | −9 | |
75/25 | Gel | <−10 | <−10 | |
P(NIPAM-co-DMAM) | 49/51 | Turbid fluid | 69 | 60 |
56/44 | Turbid fluid | 32 | 28 | |
80/20 | Gel | 4 | −9 |
Polymer | Temp. (°C) | Hydrazine Release Ratio (%) a | Hydrazine Concentration (wt%) b |
---|---|---|---|
PNIPAM | 90 | 93 | 35 |
60 | 47 | 43 | |
P(NIPAM-co-AM) (NIPAM/AM = 80/20) | 90 | 95 | 37 |
60 | 68 | 38 |
Cycle | Polymer/Hydrazine aq. (w/w) a | Hydrazine Release Ratio (%) b | Hydrazine Concentration (wt%) c |
---|---|---|---|
1 | 1/63 | 95 | 37 |
2 | 1/63 | 96 | 36 |
3 | 1/63 | 95 | 39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochiai, B.; Shimada, Y. Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine. Technologies 2020, 8, 53. https://doi.org/10.3390/technologies8040053
Ochiai B, Shimada Y. Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine. Technologies. 2020; 8(4):53. https://doi.org/10.3390/technologies8040053
Chicago/Turabian StyleOchiai, Bungo, and Yohei Shimada. 2020. "Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine" Technologies 8, no. 4: 53. https://doi.org/10.3390/technologies8040053
APA StyleOchiai, B., & Shimada, Y. (2020). Thermo-Reversible Gelation of Aqueous Hydrazine for Safe Storage of Hydrazine. Technologies, 8(4), 53. https://doi.org/10.3390/technologies8040053