In-Situ Observation of Pouring a High-Viscosity Liquid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thickener Aqueous Solution
2.2. Observation of the Pouring Process
2.3. Sensory Evaluation
3. Results and Discussion
3.1. Sensory Evaluation during the Pouring Process
3.2. In-Situ Observation of the Pouring Process
3.3. Quantitative Analysis of the Pouring Process
3.4. Controlling Factor of Ease of Pouring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Spence, C.; Wan, X. Beverage perception and consumption: The influence of the container on the perception of the contents. Food Qual. Prefer. 2015, 39, 131–140. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B.; Spence, C. The influence of the feel of product packaging on the perception of the oral-somatosensory texture of food. Food Qual. Prefer. 2012, 26, 67–73. [Google Scholar] [CrossRef]
- Langfield, T.; Pechey, R.; Pilling, M.; Marteau, T.M. Impact of glass shape on time taken to drink a soft drink: A laboratory-based experiment. PLoS ONE 2018, 13, e0202793. [Google Scholar] [CrossRef] [PubMed]
- Kohira, M.; Magome, N.; Kitahata, H.; Yoshikawa, K. Plastic bottle oscillator: Rhythmicity and mode bifurcation of fluid flow. Am. J. Phys. 2007, 75, 893–895. [Google Scholar] [CrossRef] [Green Version]
- Belair, L.G.; Bourget, M.; Villaume, S.; Jeandet, P.; Pron, H.; Polidori, G. On the losses of dissolved CO2 during champagne serving. J. Agric. Food Chem. 2010, 58, 8768–8775. [Google Scholar] [CrossRef] [PubMed]
- Chihara, T.; Yamazaki, K.; Itoh, R.; Han, J. Evaluation of drinking ease relative to the opening diameter and beverage type of aluminum beverage bottles. J. Food Eng. 2009, 95, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Takagi, D.; Huppert, H.E. Pouring viscous fluid out of a tipped container in minimal time. Phys. Rev. E 2011, 84, 035303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.; Shen, B.; Sun, Z.; He, Y.; Shi, T.; Li, X. Numerical study on the flow of high viscous fluids out of conical vessels under low-frequency vibration. Chem. Eng. Res. Des. 2018, 132, 226–234. [Google Scholar] [CrossRef]
- Kestin, J.; Sokolov, M.; Wakeham, A.W. Viscosity of liquid water in the range −8 °C to 150 °C. J Phys. Chem. Ref. Data 1978, 7, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Waga, M.; Aita, Y.; Noma, J.; Kikuchi, T.; Nonomura, Y. Scissors-type haptic device using magnetorheological fluid containing iron nanoparticles. Technologies 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Waga, M.; Aita, Y.; Noma, J.; Nonomura, Y. Tactile feels in grasping/cutting processes with scissors. Technologies 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, T. Spinnability of Liquid. A visco-elastic state. I. Spinnability and anomalous viscosity. Bull. Chem. Soc. Jpn. 1952, 25, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Imae, T. The spinnability of aqueous polymer solutions. Polym. J. 1990, 22, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Malkin, A.Y.; Semakov, A.V.; Skvortsov, I.Y.; Zatonskikh, P.; Kulichikhin, V.G.; Subbotin, A.V.; Semenov, A.N. Spinnability of dilute polymer solution. Macromolecules 2017, 50, 8231–8244. [Google Scholar] [CrossRef]
Sample | Composition/wt% | Viscosity | ||
---|---|---|---|---|
Water | PEG500,000 | /mPa·s | ||
a | Water | 100.0 | - | 0.89 [9] |
b | 1 wt% thickener aqueous solution | 99.0 | 1.0 | 12.15 |
c | 2 wt% thickener aqueous solution | 98.0 | 2.0 | 53.04 |
d | 3 wt% thickener aqueous solution | 97.0 | 3.0 | 230.4 |
e | 4 wt% thickener aqueous solution | 98.0 | 4.0 | 710.7 |
f | 5 wt% thickener aqueous solution | 95.0 | 5.0 | 1836 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazawa, C.; Sakagami, K.; Konno, N.; Nonomura, Y. In-Situ Observation of Pouring a High-Viscosity Liquid. Technologies 2020, 8, 69. https://doi.org/10.3390/technologies8040069
Miyazawa C, Sakagami K, Konno N, Nonomura Y. In-Situ Observation of Pouring a High-Viscosity Liquid. Technologies. 2020; 8(4):69. https://doi.org/10.3390/technologies8040069
Chicago/Turabian StyleMiyazawa, Chisa, Koichi Sakagami, Naoki Konno, and Yoshimune Nonomura. 2020. "In-Situ Observation of Pouring a High-Viscosity Liquid" Technologies 8, no. 4: 69. https://doi.org/10.3390/technologies8040069
APA StyleMiyazawa, C., Sakagami, K., Konno, N., & Nonomura, Y. (2020). In-Situ Observation of Pouring a High-Viscosity Liquid. Technologies, 8(4), 69. https://doi.org/10.3390/technologies8040069