Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Search Strategy
2.3. Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Exercise Mode
3.2. Study Design
3.3. Wearable Device
3.4. Device Validity
3.4.1. Estimated Energy Expenditure
3.4.2. Heart Rate
3.4.3. Other Physiological Variables
3.5. Outdoor Location/Environment
3.6. Risk of Bias
4. Discussion
4.1. Study Design
4.2. Analytical Techniques, Validity Criteria, and Quality Assessment
4.3. Limitations
5. Conclusions
Funding
Conflicts of Interest
References
- Archiza, B.; Welch, J.F.; Sheel, A.W. Classical experiments in whole-body metabolism: Closed-circuit respirometry. Eur. J. Appl. Physiol. 2017, 117, 1929–1937. [Google Scholar] [CrossRef]
- Schoffelen, P.F.M.; Plasqui, G. Classical experiments in whole-body metabolism: Open-circuit respirometry—diluted flow chamber, hood, or facemask systems. Eur. J. Appl. Physiol. 2017, 118, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Statista. Available online: https://www.statista.com/statistics/487291/global-connected-wearable-devices/ (accessed on 6 October 2020).
- Wright, S.P.; Brown, T.S.H.; Collier, S.R.; Sandberg, K. How consumer physical activity monitors could transform human physiology research. Am. J. Physiol. Integr. Comp. Physiol. 2017, 312, R358–R367. [Google Scholar] [CrossRef] [PubMed]
- BUNN, J.A.; Navalta, J.W.; Fountaine, C.J.; REECE, J.D. Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503. [Google Scholar] [PubMed]
- Knowles, B.; Smith-Renner, A.; Poursabzi-Sangdeh, F.; Lu, D.; Alabi, H. Uncertainty in current and future health wearables. Commun. ACM 2018, 61, 62–67. [Google Scholar] [CrossRef]
- Curcin, V.; Silva, P.A.; Guisado-Fernandez, E.; Loncar-Turukalo, T.; Zdravevski, E.; Da Silva, J.M.; Chouvarda, I.; Trajkovik, V. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. J. Med. Internet Res. 2019, 21, e14017. [Google Scholar] [CrossRef]
- Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016, 13, e1001953. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR mHealth uHealth 2018, 6, e102. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Bai, Y.; Lee, J.-M.; Godino, J.; Saint-Maurice, P.F.; Carr, L. Standardizing Analytic Methods and Reporting in Activity Monitor Validation Studies. Med. Sci. Sports Exerc. 2019, 51, 1767–1780. [Google Scholar] [CrossRef]
- Adesida, Y.; Papi, E.; McGregor, A. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef] [Green Version]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brickwood, K.-J.; Watson, G.; O’Brien, J.; Williams, A.D. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR mHealth uHealth 2019, 7, e11819. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Stewart, J. Use of consumer wearable devices to promote physical activity: A review of health intervention studies. J. Environ. Health Sci. 2016, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mercer, K.; Li, M.; Giangregorio, L.M.; Burns, C.M.; Grindrod, K. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis. JMIR mHealth uHealth 2016, 4, e40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisson, A.N.S.; Lachman, M.E. Behavior Change with Fitness Technology in Sedentary Adults: A Review of the Evidence for Increasing Physical Activity. Front. Public Health 2017, 4, 289. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A review of wearable technology in medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef]
- Straiton, N.; Alharbi, M.; Bauman, A.; Neubeck, L.; Gullick, J.; Bhindi, R.; Gallagher, R. The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: A systematic review. Maturitas 2018, 112, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, S.; Barton, J.; O’Flynn, B. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry. Sensors 2017, 17, 1277. [Google Scholar] [CrossRef] [Green Version]
- Khakurel, J.; Melkas, H.; Porras, J. Tapping into the wearable device revolution in the work environment: A systematic review. Inf. Technol. People 2018, 31, 791–818. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Mathew, L.; Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 2017, 90, 298–307. [Google Scholar] [CrossRef]
- Lewis, Z.H.; Lyons, E.J.; Jarvis, J.M.; Baillargeon, J. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health 2015, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahloko, L.; Adebesin, F. A Systematic Literature Review of the Factors that Influence the Accuracy of Consumer Wearable Health Device Data. In Responsible Design, Implementation and Use of Information and Communication Technology; Springer: Berlin, Germany, 2020; pp. 96–107. [Google Scholar]
- Sanders, J.P.; Loveday, A.; Pearson, N.; Edwardson, C.L.; Yates, T.; Biddle, S.J.H.; Esliger, D.W.; Lyden, K.; Miner, A. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review. J. Med. Internet Res. 2016, 18, e90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, G.; Jarrahi, M.H.; Fei, Y.; Karami, A.; Gafinowitz, N.; Byun, A.; Lu, X. Wearable activity trackers, accuracy, adoption, acceptance and health impact: A systematic literature review. J. Biomed. Inform. 2019, 93, 103153. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, R.; Turicchi, J.; Beaulieu, K.; Scott, S.; Matu, J.; Deighton, K.; Finlayson, G.; Stubbs, J. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br. J. Sports Med. 2018, 54, 332–340. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Prisma Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sutton, A.; Clowes, M.; Preston, L.; Booth, A. Meeting the review family: Exploring review types and associated information retrieval requirements. Health. Inf. Libr. J. 2019, 36, 202–222. [Google Scholar] [CrossRef]
- Barrios, B.; Carrier, B.; Jolley, B.; Davis, D.W.; Sertic, J.; Navalta, J.W. Establishing a Methodology for Conducting a Rapid Review on Wearable Technology Reliability and Validity in Applied Settings. Top. Exerc. Sci. Kinesiol. 2020, 1, 8. [Google Scholar]
- Dwyer, G.B.; Davis, S.E. ACSM’s Health-Related Physical Fitness Assessment Manual; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Du, J.T.; Evans, N. Academic Users’ Information Searching on Research Topics: Characteristics of Research Tasks and Search Strategies. J. Acad. Libr. 2011, 37, 299–306. [Google Scholar] [CrossRef]
- Gusenbauer, M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics 2019, 118, 177–214. [Google Scholar] [CrossRef] [Green Version]
- Adamakis, M. Comparing the Validity of a GPS Monitor and a Smartphone Application to Measure Physical Activity. J. Mob. Technol. Med. 2017, 6, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Carrier, B.; Creer, A.; Williams, L.R.; Holmes, T.M.; Jolley, B.D.; Dahl, S.; Weber, E.; Standifird, T. Validation of Garmin Fenix 3 HR Fitness Tracker Biomechanics and Metabolics (VO2max). J. Meas. Phys. Behav. 2020, 1–7. [Google Scholar] [CrossRef]
- Montes, J.; Stone, T.M.; Manning, J.W.; McCune, D.; Tacad, D.K.; Young, J.C.; DeBeliso, M.; Navalta, J.W. Using Hexoskin Wearable Technology to Obtain Body Metrics During Trail Hiking. Int. J. Exerc. Sci. 2015, 8, 425–430. [Google Scholar] [PubMed]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef]
- Parak, J.; Uuskoski, M.; Machek, J.; Korhonen, I. Estimating Heart Rate, Energy Expenditure, and Physical Performance with a Wrist Photoplethysmographic Device During Running. JMIR mHealth uHealth 2017, 5, e97. [Google Scholar] [CrossRef]
- Tanner, E.A.; Montes, J.; Manning, J.W.; Taylor, J.E.; DeBeliso, M.; Young, J.C.; Navalta, J.W. Validation of Hexoskin biometric shirt to COSMED K4 b2 metabolic unit in adults during trail running. Sports Technol. 2015, 8, 118–123. [Google Scholar] [CrossRef]
- Wahl, Y.; Düking, P.; Droszez, A.; Wahl, P.; Mester, J. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. Front. Physiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR mHealth uHealth 2018, 6, e94. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.; Pumpa, K.L.; Wheeler, K.W.; Pyne, D.B. Validity of the SenseWear Armband to Assess Energy Expenditure During Intermittent Exercise and Recovery in Rugby Union Players. J. Strength Cond. Res. 2014, 28, 1090–1095. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Comparison of the Cosmed K4b2 Portable Metabolic System in Measuring Steady-State Walking Energy Expenditure. PLoS ONE 2010, 5, e9292. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Georg, T.; Becker, C.; Kindermann, W. Reliability of Gas Exchange Measurements from Two Different Spiroergometry Systems. Int. J. Sports Med. 2001, 22, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, D.J.; Wong, P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. Eur. J. Appl. Physiol. 2012, 112, 2539–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouts, A.M.; Brackman, L.; Martin, E.; Subasic, A.M.; Potkanowicz, E.S. The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise. Int. J. Exerc. Sci. 2018, 11, 533–540. [Google Scholar] [PubMed]
- Montes, J.; Navalta, J.W. Reliability of the Polar T31 Uncoded Heart Rate Monitor in Free Motion and Treadmill Activities. Int. J. Exerc. Sci. 2019, 12, 69–76. [Google Scholar] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Consumer Technology Association. Physical Activity Monitoring for Heart Rate, ANSI/CTA-2065; Consumer Technology Association: Hopewell, VA, USA, 2018. [Google Scholar]
- Consumer Technology Association. ANSI/CTA Standard Intensity Metrics: Physical Activity Monitoring; Consumer Technology Association: Hopewell, VA, USA, 2020. [Google Scholar]
- Consumer Technology Association. Physical Activity Monitoring for Step Counting, ANSI/CTA-2056; Consumer Technology Association: Hopewell, VA, USA, 2016. [Google Scholar]
- Claes, J.; Buys, R.; Avila, A.; Finlay, D.; Kennedy, A.; Guldenring, D.; Budts, W.; Cornelissen, V.A. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J. Med. Eng. Technol. 2017, 41, 480–485. [Google Scholar] [CrossRef]
- Floegel, T.A.; Florez-Pregonero, A.; Hekler, E.B.; Buman, M.P. Validation of Consumer-Based Hip and Wrist Activity Monitors in Older Adults with Varied Ambulatory Abilities. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 72, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Nelson, B.W.; Allen, N.B. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR mHealth uHealth 2019, 7, e10828. [Google Scholar] [CrossRef]
- Tufanaru, C.; Munn, Z.; Stephenson, M.; Aromataris, E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int. J. Evid.-Based Health 2015, 13, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.; Bird, S.; Lythgo, N.; Selva-Raj, I. Changing the Physical Activity Behavior of Adults with Fitness Trackers: A Systematic Review and Meta-Analysis. Am. J. Health Promot. 2019, 34, 418–430. [Google Scholar] [CrossRef]
Exercise Format | Technology Term | Statistical Measure | Natural Environment |
---|---|---|---|
Biking | Activity Trackers | Reliability | Field |
Cycling | Fitness Trackers | Validity | Outdoors |
Exercise | Wearables | ||
Hiking | Wearable Technology | ||
Rowing | |||
Running | |||
Swimming | |||
Triathlon | |||
Walking |
Author | Device | Company Information | Location |
---|---|---|---|
Adamakis (2017) | Garmin Forerunner 310XT with Chest HR Monitor | Garmin Ltd., Olathe, KS, USA | Wrist and Chest |
Carrier et al. (2020) | Garmin fēnix 3 HR + Chest HRM | Garmin Ltd., Olathe, KS, USA | Wrist |
Montes et al. (2015) | Hexoskin Biometric Shirt | Carré Technologies Inc., Montreal, QC, Canada | Torso |
Navalta et al. (2020) | Garmin fēnix 5 | Garmin Ltd., Olathe, KS, USA | Wrist |
Navalta et al. (2020) | Jabra Elite Sport Earbuds | Jabra, Copenhagen, Denmark | Ears |
Navalta et al. (2020) | Motiv Ring | Motiv Inc., San Francisco, CA, USA | Hand |
Navalta et al. (2020) | Scosche Rhythm+ Forearm Band | Scosche Industries Inc., Oxnard, CA, USA | Forearm |
Navalta et al. (2020) | Suunto Spartan Sport Watch + Chest HRM | Suunto Oy, Vantaa, Finland | Wrist and Chest |
Parak et al. (2017) | PulseOn | PulseOn, Espoo, Finland | Wrist |
Tanner et al. (2016) | Hexoskin Biometric Shirt | Carré Technologies Inc., Montreal, QC, Canada | Torso |
Wahl et al. (2017) | BodyMedia Sensewear MF | BodyMedia Inc., Pittsburgh, PA, USA | Upper Arm |
Wahl et al. (2017) | Beurer AS80 | Beurer GmbH, Ulm, Germany | Wrist |
Wahl et al. (2017) | Polar Loop | Polar Corp., Worcester, Massachusetts, USA | Wrist |
Wahl et al. (2017) | Garmin Vivofit | Garmin Ltd., Olathe, KS, USA | Wrist |
Wahl et al. (2017) | Garmin Vivosmart | Garmin Ltd., Olathe, KS, USA | Wrist |
Wahl et al. (2017) | Garmin Vivoactive | Garmin Ltd., Olathe, KS, USA | Wrist |
Wahl et al. (2017) | Garmin Forerunner 920XT | Garmin Ltd., Olathe, KS, USA | Wrist |
Wahl et al. (2017) | Fitbit Charge | Fitbit Inc., San Francisco, CA, USA | Wrist |
Wahl et al. (2017) | Fitbit Charge HR | Fitbit Inc., San Francisco, CA, USA | Wrist |
Wahl et al. (2017) | Xiaomi Mi Band | Xiaomi Corp., Beijing, China | Wrist |
Wahl et al. (2017) | Withings Pulse Ox | Withings SACA, Issy Les Moulineaux, France | Wrist |
Xie et al. (2018) | Apple Watch 2 | Apple Inc., Cupertino, CA, USA | Wrist |
Xie et al. (2018) | Samsung Gear S3 | Samsung Electronics Co., Ltd., Seoul, South Korea | Wrist |
Xie et al. (2018) | Jawbone Up 3 | Jawbone Inc., Beverly Hills, CA, USA | Wrist |
Xie et al. (2018) | Fitbit Surge | Fitbit Inc., San Francisco, CA, USA | Wrist |
Xie et al. (2018) | Huawei Talk Band B3 | Huawei Technologies Co., Ltd., Longgang District, Shenzhen, China | Wrist |
Xie et al. (2018) | Xiaomi Mi Band 2 | Xiaomi Corp., Beijing, China | Wrist |
Zanetti et al. (2014) | BodyMedia SenseWear Mini Armband | BodyMedia Inc., Pittsburgh, PA, USA | Wrist |
Author | Wearable Device | Exercise Modality | Validity Measure |
---|---|---|---|
Adamakis (2017) | Garmin Forerunner 310XT | Walking | MAPE = 17.39% |
Adamakis (2017) | Garmin Forerunner 310XT | Running | MAPE = 17.32% |
Parak et al. (2017) | PulseOn | Running | Bias: −11.93+13.99, MAE = 13.05, MAPE = 16.5%, r = 0.77 |
Tanner et al. (2016) | Hexoskin Biometric Shirt | Trail Running | r = −0.058 |
Wahl et al. (2017) | Bodymedia Sensewear MF | Running | MAPE = −20.8%, ICC = 0.43, TE = 21.8, LoA = 9.7 to −103.6 |
Wahl et al. (2017) | Polar Loop | Running | MAPE = 22.1%, ICC = −0.18, TE = 71.4, LoA = 163.0 to −94.8 |
Wahl et al. (2017) | Beurer AS80 | Running | MAPE = −48.4%, ICC = −0.04, TE = 56.8, LoA = 1.3 to −216.9 |
Wahl et al. (2017) | Garmin Vivofit | Running | MAPE = −20.2%, ICC = 0.56, TE = 14.3, LoA = −1.9 to −86.6 |
Wahl et al. (2017) | Garmin Vivosmart | Running | MAPE = −1.5%, ICC = 0.82, TE = 13.6, LoA = 59.0 to −66.8 |
Wahl et al. (2017) | Garmin Vivoactive | Running | MAPE = −4.5%, ICC = 0.91, TE = 5.4, LoA = 24.3 to −46.2 |
Wahl et al. (2017) | Garmin Forerunner 920 XT | Running | MAPE = −21.2%, ICC = 0.34, TE = 31.9, LoA = 29.3 to −124.5 |
Wahl et al. (2017) | Fitbit Charge | Running | MAPE = −4.5%, ICC = 0.64, TE = 18.6, LoA = 46.2 to −75.6 |
Wahl et al. (2017) | Fitbit Charge HR | Running | MAPE = −12.0%, ICC = 0.53, TE = 24.4, LoA = 40.2 to −99.5 |
Wahl et al. (2017) | Withings Pulse Ox (Hip) | Running | MAPE = −5.5%, ICC = 0.21, TE = 52.0, LoA = 97.3 to −132.2 |
Wahl et al. (2017) | Withings Pulse Ox (Wrist) | Running | MAPE = −4.5%, ICC = 0.22, TE = 50.0, LoA = 91.7 to −130.4 |
Xie et al. (2018) | Jawbone Up3 | Running, Walking, Cycling | MAPE = 28% |
Xie et al. (2018) | Huawei Talk Band B3 | Running, Walking, Cycling | MAPE = 32% |
Xie et al. (2018) | Samsung Gear S3 | Running, Walking, Cycling | MAPE = 38% |
Xie et al. (2018) | Xiaomi Mi Band 2 | Running, Walking, Cycling | MAPE = 40% |
Xie et al. (2018) | Apple Watch 2 | Running, Walking, Cycling | MAPE = 49% |
Xie et al. (2018) | Fitbit Surge | Running, Walking, Cycling | MAPE = 67% |
Zanetti et al. (2014) | BodyMedia SenseWear Mini Armband | Rugby Intermittent Exercise Test | r = 0.55 |
Author | Wearable Device | Exercise Modality | Reliability/Validity Measure |
---|---|---|---|
Montes et al. (2015) | Hexoskin Smart Shirt (reliability) | Hiking (Average Heart Rate) | ICC = 0.73 |
Montes et al. (2015) | Hexoskin Smart Shirt (reliability) | Hiking (Maximal Heart Rate) | ICC = 0.68 |
Navalta et al. (2020) | Garmin Fenix 5 | Trail Running | MAPE = 13.5%, MAE = 20.8 bpm, CCC = 0.316, ICC = 0.415 |
Navalta et al. (2020) | Jabra Elite Sport | Trail Running | MAPE = 21.3%, MAE = 30.0 bpm, CCC = 0.384, ICC = 0.395 |
Navalta et al. (2020) | Motiv Ring | Trail Running | MAPE = 15.9%, MAE = 25.1 bpm, CCC = 0.293, ICC = 0.287 |
Navalta et al. (2020) | Scosche Rhythm+ | Trail Running | MAPE = 5.6%, MAE = 7.3 bpm, CCC = 0.780, ICC = 0.120 |
Navalta et al. (2020) | Suunto Spartan Sport w/HRM | Trail Running | MAPE = 1.9%, MAE = 2.9 bpm, CCC = 0.955, ICC = 0.955 |
Tanner et al. (2016) | Hexoskin Smart Shirt | Trail Running | r = −0.012 to 0.354 |
Xie et al. (2018) | Samsung Gear S3 | Running, Walking, Cycling | MAPE = 4% |
Xie et al. (2018) | Apple Watch 2 | Running, Walking, Cycling | MAPE = 7% |
Xie et al. (2018) | Fitbit Surge | Running, Walking, Cycling | MAPE = 8% |
Xie et al. (2018) | Xiaomi Mi Band 2 | Running, Walking, Cycling | MAPE = 12% |
Author | Physiological Variable | Wearable Device | Exercise Modality | Validity Measure |
---|---|---|---|---|
Carrier et al. (2020) | VO2max | Garmin fenix 3 HR | Running | MAPE = 8.05%, r = 0.917 |
Parak et al. (2017) | VO2max | PulseOn | Running | −1.07+2.75, MAE = 2.39, MAPE = 5.2%, r = 0.86 |
Tanner et al. (2016) | Ventilation Rate | Hexoskin | Trail Running | r = 0.678 to 0.937 |
Tanner et al. (2016) | Minute Ventilation | Hexoskin | Trail Running | r = −0.020 to 0.146 |
Author (Year) | Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall | Low risk Some concerns High risk |
Zanetti et al. 2014 | |||||||
Montes et al. 2015 | |||||||
Tanner et al. 2016 | |||||||
Parak et al. 2017 | |||||||
Adamakis 2017 | |||||||
Whal et al. 2017 | |||||||
Xie et al. 2018 | |||||||
Carrier et al. 2020 | |||||||
Navalta et al. 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrier, B.; Barrios, B.; Jolley, B.D.; Navalta, J.W. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies 2020, 8, 70. https://doi.org/10.3390/technologies8040070
Carrier B, Barrios B, Jolley BD, Navalta JW. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies. 2020; 8(4):70. https://doi.org/10.3390/technologies8040070
Chicago/Turabian StyleCarrier, Bryson, Brenna Barrios, Brayden D. Jolley, and James W. Navalta. 2020. "Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review" Technologies 8, no. 4: 70. https://doi.org/10.3390/technologies8040070
APA StyleCarrier, B., Barrios, B., Jolley, B. D., & Navalta, J. W. (2020). Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies, 8(4), 70. https://doi.org/10.3390/technologies8040070