Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospraying Polymer Solutions and Evaluation of Their Properties
2.3. Electrospraying Technique
2.4. Morphology and Diameters of Nanoparticles. Statistical Analysis
3. Results and Discussion
3.1. Properties of Polymer Solutions
3.1.1. Electrical Conductivity
3.1.2. Density
3.1.3. Surface Tension
3.1.4. Rheological Characteristics
3.1.5. Solutions Electrosprayability
3.1.6. SEM Analysis
3.1.7. Statistical Analysis
4. Conclusions and Future Perspectives
- Utilizing HA solutions with an optimal concentration range from 2.5 to 7.5 mg/mL provides the obtaining of polymer nanoparticles with a mean diameter equal to 300 nm.
- Dimensions of nanoparticles combined with the negative charge of hyaluronic acid ensure the possibility of use of such nanoparticles as modern drug delivery systems, including the intravenous route of the administration.
- Physical properties of the solutions such as electrical conductivity, surface tension, and viscosity should be taken into consideration to define the optimal parameters of polymer solutions for the obtaining of nanoparticles with required structural and exploitative property packages.
- A further investigation should be aimed at in several important ways. Firstly, narrowing of diameter distributions driven by varying technological parameters results in raising the potential utilization of hyaluronic acid nanoparticles in medicine. Secondly, loading biologically active substances into the polymer nanoparticles is a challenging issue, which results in fewer side-effects of drug molecules and enhanced bioavailability and thus less dose regime. The latter opens a new direction in the field of targeted drug delivery.
Author Contributions
Funding
Conflicts of Interest
References
- Selyanin, M.A.; Khabarov, V.N.; Boykov, P.Y. Hyaluronic Acid: Production, Properties, Application in Biology and Medicine; John Wiley & Sons, Ltd.: Chichester, UK, 2015; p. 215. [Google Scholar]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, T.C.; Laurent, U.B.; Fraser, J.R. Functions of hyaluronan. Ann. Rheum. Dis. 1995, 54, 429–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermatoendocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, F.; Ryan, E.; Culebras, M.; Collins, M.N. Labile crosslinked hyaluronic acid via urethane formation using bis(β-isocyanatoethyl) disulphide with tuneable physicochemical and immunomodulatory properties. Carbohyd. Polym. 2020, 245, 116501. [Google Scholar] [CrossRef]
- Zamboni, F.; Keays, M.; Hayes, S.; Albadarin, A.B.; Walker, G.M.; Kiely, P.A.; Collins, M.N. Enhanced cell viability in hyaluronic acid coated poly(lactic-co-glycolic acid) porous scaffolds within microfluidic channels. Int. J. Pharm. 2017, 532, 595–602. [Google Scholar] [CrossRef]
- Brown, T. The Development of Hyaluronan as a Drug Transporter and Excipient for Chemotherapeutic Drugs. Curr. Pharm. Biotechnol. 2008, 9, 253–260. [Google Scholar] [CrossRef]
- Ouhtit, A.; Abd Elmageed, Z.Y.; Abdraboh, M.E.; Lioe, T.F.; Raj, M.H.G. In Vivo Evidence for the Role of CD44s in Promoting Breast Cancer Metastasis to the Liver. Am. J. Pathol. 2007, 171, 2033–2039. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, P.; Clingan, P.R.; Ganju, V.; Strickland, A.H.; Wong, S.S.; Tebbutt, N.C.; Underhill, C.R.; Fox, R.M.; Clavant, S.P.; Leung, J.; et al. Hyaluronan-Irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: A randomized phase II trial. Cancer Chemother. Pharm. 2011, 67, 153–163. [Google Scholar] [CrossRef]
- Dunuweera, S.P.; Rajapakse, R.M.S.I.; Rajapakshe, R.B.S.D.; Wijekoon, S.H.D.P.; Nirodha Thilakarathna, M.G.G.S.; Rajapakse, R.M.G. Review on Targeted Drug Delivery Carriers Used in Nanobiomedical Applications. CNANO 2019, 15, 382–397. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R.; Bannerjee, S.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M. del P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.R. (Ed.) Electrospinning: Principles, Practice Possibilities, 1st ed.; Polymer Chemistry Series; The Royal Society of Chemistry: London, UK, 2015; ISBN 978-1-84973-556-8. [Google Scholar]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef] [Green Version]
- Snetkov, P.; Morozkina, S.; Olekhnovich, R.; Vu, T.H.N.; Tyanutova, M.; Uspenskaya, M. Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid. Materials 2020, 13, 3476. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Morozkina, S.; Uspenskaya, M.; Olekhnovich, R. Hyaluronan-Based Nanofibers: Fabrication, Characterization and Application. Polymers 2019, 11, 2036. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.M.M.; Pascau, J. Image Processing with Image; Packt Publishing Ltd: Birmingham, UK, 2013. [Google Scholar]
- Habibi, Y.; Lucia, L. Polysaccharide Building Blocks: A Sustainable Approach to the Development of Renewable Biomaterials; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Finkenstadt, V.L. Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 2005, 67, 735–745. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kargerová, A.; Pekař, M. Densitometry and ultrasound velocimetry of hyaluronan solutions in water and in sodium chloride solution. Carbohydr. Polym. 2014, 106, 453–459. [Google Scholar] [CrossRef]
- García-Abuín, A.; Gómez-Díaz, D.; Navaza, J.M.; Regueiro, L.; Vidal-Tato, I. Viscosimetric behaviour of hyaluronic acid in different aqueous solutions. Carbohydr. Polym. 2011, 85, 500–505. [Google Scholar] [CrossRef]
- Garg, K.; Bowlin, G.L. Electrospinning jets and nanofibrous structures. Biomicrofluidics 2011, 5, 13403. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, W.; Mata, J.L.; Saramago, B. Effect of Concentration and Temperature on Surface Tension of Sodium Hyaluronate Saline Solutions. Langmuir 2007, 23, 7014–7017. [Google Scholar] [CrossRef] [PubMed]
- Almond, A.; Brass, A.; Sheehan, J.K. Deducing polymeric structure from aqueous molecular dynamic simulations of oligosaccharides: Prediction from simulation of hyaluronan tetrasaccharides compared with hydrodynamic and X-ray fiber diffraction date. J. Mol. Biol. 1998, 284, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.E.; Heatley, F. Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR stud. Natl. Acad. Sci. 1999, 96, 4850–4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.E.; Cummings, C.; Brass, A.; Chen, Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem. J. 1991, 274, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, E.D.; Sheehan, J.K. Hyaluronates: Relation between molecular conformations. Science 1973, 179, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Dea, I.C.; Moorhouse, M.R. Hyaluronic acid: A novel, double helical molecule. Science 1973, 179, 560–562. [Google Scholar] [CrossRef]
- Fraser, J.R.E.; Laurent, T.C.; Laurent, U.B.G. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997, 242, 27–33. [Google Scholar] [CrossRef]
- Laurent, T.C.; Laurent, U.B.; Fraser, J.R.E. The structure and function of hyaluronan: An overview. Immunol. Cell Biol. 1996, 74, a1–a7. [Google Scholar] [CrossRef]
- Pisárčik, M.; Bakoš, D.; Čeppan, M. Non-Newtonian properties of hyaluronic acid aqueous solution. Colloids Surf. Physicochem. Eng. Asp. 1995, 97, 197–202. [Google Scholar] [CrossRef]
HA Concentration mg/mL | Electrical Conductivity μS/cm | Density g/cm3 | Surface Tension mN/m |
---|---|---|---|
2.5 | 470 ± 29 | 0.9987 ± 0.0003 | 72.50 ± 1.05 |
5.0 | 834 ± 23 | 0.9998 ± 0.0003 | 71.54 ± 0.45 |
7.5 | 1219 ± 22 | 1.0008 ± 0.0003 | 71.22 ± 0.83 |
10.0 | 1603 ± 38 | 1.0019 ± 0.0002 | 70.84 ± 0.38 |
12.5 | 1946 ± 50 | 1.0025 ± 0.0002 | 69.99 ± 0.89 |
15.0 | 2363 ± 40 | 1.0037 ± 0.0003 | 68.95 ± 0.29 |
HA Concentration, mg/mL | Diameter of Nanoparticles Obtained, um | ||
---|---|---|---|
Mean | Max | Min | |
2.5 | 0.297 ± 0.145 | 0.897 | 0.105 |
5.0 | 0.322 ± 0.151 | 0.938 | 0.116 |
7.5 | 0.315 ± 0.125 | 0.787 | 0.0975 |
10.0 | 0.383 ± 0.247 | 1.466 | 0.122 |
12.5 | 0.387 ± 0.223 | 1.495 | 0.128 |
15.0 | 0.584 ± 0.398 | 1.797 | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snetkov, P.; Zakharova, K.; Morozkina, S.; Baranov, M.; Olekhnovich, R.; Uspenskaya, M. Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization. Technologies 2020, 8, 71. https://doi.org/10.3390/technologies8040071
Snetkov P, Zakharova K, Morozkina S, Baranov M, Olekhnovich R, Uspenskaya M. Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization. Technologies. 2020; 8(4):71. https://doi.org/10.3390/technologies8040071
Chicago/Turabian StyleSnetkov, Petr, Kseniia Zakharova, Svetlana Morozkina, Mikhail Baranov, Roman Olekhnovich, and Mayya Uspenskaya. 2020. "Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization" Technologies 8, no. 4: 71. https://doi.org/10.3390/technologies8040071
APA StyleSnetkov, P., Zakharova, K., Morozkina, S., Baranov, M., Olekhnovich, R., & Uspenskaya, M. (2020). Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization. Technologies, 8(4), 71. https://doi.org/10.3390/technologies8040071