Does Urban Digital Construction Promote Economic Growth? Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Urban Digital Construction
2.2. Digital Technology in Urban Digital Construction
2.3. The Level of Urban Digital Construction and Economic Growth
- Measurement dimensions and indicators of the level of urban digital construction. Generally speaking, scholars have examined the level of urban digital construction from aspects such as digital infrastructure (Cong et al. 2022; Ndubuisi et al. 2021), digital economy (Popkova and Gulzat 2020; Wang et al. 2022), digital government (Castro and Lopes 2022; Lin et al. 2021; Pedrosa et al. 2020), and digital ecology (Pauliuk et al. 2022; Peng and Tao 2022). Meanwhile, indicators involving digital innovation elements (Cheng and Wang 2022; Ramdani et al. 2022), digital infrastructure (Lan and Zhu 2023; Sotolongo 2023), core digital industries (Ariffin and Ahmad 2021; Zhu and Chen 2022), and digital convergence applications (Borowiecki et al. 2021; Mitrović 2020) have also been considered. These indicators have both commonalities and differences, reflecting the multidimensionality and complexity of urban digital construction.
- Measurement methods and technologies for urban digital construction. Scholars have used different measurement methods and techniques, such as the index method (Alderete 2020; Ren et al. 2022), factor analysis method (García-Vandewalle García et al. 2023; Zhang et al. 2022c), cluster analysis method (Xia et al. 2022; Zheng et al. 2020), structural equation model (Nicolas et al. 2020; Wang et al. 2021), data envelopment analysis method (Cao et al. 2022; Kutty et al. 2022), gray correlation analysis method (Sun and Zhang 2020), etc. In addition, some studies have also tried to use new technologies, such as big data (Atitallah et al. 2020; Zhang et al. 2022a), cloud computing (Jiang 2020; Kaginalkar et al. 2021), and machine learning (Austin et al. 2020; Li et al. 2022; Zekić-Sušac et al. 2021), to improve the measurement accuracy and real-time performance of urban digital construction.
- The relationship between urban digital construction and economic growth. A number of scholars have discussed the correlation or causality between the level of urban digital construction and economic growth, arguing that the former has positive effects on the latter (Guo et al. 2023; Zhu and Chen 2022). At the same time, other scholars have pointed out that the relationship between urban digital construction and economic growth is not a simple linear relationship (Huang et al. 2023; Liu et al. 2022).
3. Methodology
3.1. Factors Influencing the Level of Urban Digital Construction
3.1.1. Primary Indicators
3.1.2. Secondary Indicators
3.2. Construction of the Evaluation Index System
3.2.1. Indicator System
3.2.2. Data Sources
4. Results
4.1. Evaluation Results
4.2. Model Specification
4.3. Variable Selection
4.4. Empirical Results and Analysis
5. Test and Analysis
5.1. Endogeneity Test
5.2. Robustness Test
5.2.1. Substitution of Core Explanatory Variable
5.2.2. Substitution of Control Variables
5.2.3. Selection of Different Study Periods
5.3. Heterogeneity Analysis
6. Conclusions
6.1. Theoretical Conclusions
6.2. Practical Conclusions
6.3. Social Conclusions
6.4. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Principles for Constructing an Evaluation Indicator System
Appendix B. Empowerment Methodology
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Ankang | 0.3384 | 0.3540 | 0.3644 | 0.3729 | 0.3950 | 0.4198 | 0.4599 | 0.4510 | 0.4729 | 0.4333 | 0.4734 |
Anqing | 0.3750 | 0.4103 | 0.4324 | 0.4496 | 0.4908 | 0.5250 | 0.5731 | 0.5497 | 0.5827 | 0.5970 | 0.6266 |
Anshun | 0.2962 | 0.3378 | 0.3633 | 0.4001 | 0.4303 | 0.4607 | 0.4874 | 0.4987 | 0.4996 | 0.5008 | 0.5478 |
Anyang | 0.3807 | 0.3997 | 0.4196 | 0.4352 | 0.4650 | 0.4916 | 0.5289 | 0.5368 | 0.5528 | 0.5503 | 0.5631 |
Anshan | 0.4556 | 0.4672 | 0.4925 | 0.4983 | 0.5154 | 0.5270 | 0.5484 | 0.5538 | 0.5584 | 0.5578 | 0.5639 |
Bayannur | 0.2868 | 0.2996 | 0.3242 | 0.3492 | 0.3730 | 0.4127 | 0.4413 | 0.4231 | 0.4615 | 0.4768 | 0.5022 |
Bazhong | 0.2645 | 0.2958 | 0.3142 | 0.3477 | 0.3807 | 0.4079 | 0.4208 | 0.4105 | 0.4390 | 0.4290 | 0.4409 |
Baicheng | 0.2916 | 0.3177 | 0.3449 | 0.3517 | 0.3702 | 0.3978 | 0.4596 | 0.4293 | 0.4532 | 0.4603 | 0.4927 |
Baishan | 0.3282 | 0.3290 | 0.3433 | 0.3519 | 0.3661 | 0.3992 | 0.4096 | 0.4262 | 0.4523 | 0.4458 | 0.4730 |
Baiyin | 0.2440 | 0.3044 | 0.3292 | 0.3546 | 0.3697 | 0.4096 | 0.4641 | 0.4427 | 0.4603 | 0.4702 | 0.4952 |
Baise | 0.3074 | 0.3159 | 0.3263 | 0.3609 | 0.3900 | 0.4336 | 0.4821 | 0.4615 | 0.4931 | 0.5170 | 0.5478 |
Bengbu | 0.3958 | 0.4257 | 0.4494 | 0.4735 | 0.5029 | 0.5456 | 0.5657 | 0.5783 | 0.5948 | 0.6033 | 0.6243 |
Baotou | 0.4103 | 0.4425 | 0.4624 | 0.4833 | 0.4989 | 0.5368 | 0.5663 | 0.5543 | 0.5731 | 0.5894 | 0.6145 |
Baoji | 0.3763 | 0.4301 | 0.4384 | 0.4621 | 0.4836 | 0.5030 | 0.5393 | 0.5455 | 0.5659 | 0.5832 | 0.5992 |
Baoding | 0.4526 | 0.4824 | 0.4937 | 0.5143 | 0.5356 | 0.5618 | 0.6111 | 0.6163 | 0.6506 | 0.6630 | 0.6961 |
Baoshan | 0.2527 | 0.2806 | 0.3017 | 0.3209 | 0.3509 | 0.3682 | 0.4184 | 0.4093 | 0.4550 | 0.4714 | 0.4978 |
Beihai | 0.3496 | 0.3817 | 0.4051 | 0.4216 | 0.4461 | 0.4719 | 0.5343 | 0.5147 | 0.5305 | 0.5393 | 0.5603 |
Beijing | 0.7583 | 0.7899 | 0.8304 | 0.8407 | 0.8592 | 0.8738 | 0.8920 | 0.9082 | 0.9389 | 0.9306 | 0.9334 |
Benxi | 0.3560 | 0.3683 | 0.3955 | 0.4140 | 0.4299 | 0.4324 | 0.4607 | 0.4439 | 0.4572 | 0.4769 | 0.5027 |
Binzhou | 0.3281 | 0.3403 | 0.3659 | 0.3627 | 0.3797 | 0.4020 | 0.4332 | 0.4280 | 0.4535 | 0.4766 | 0.5014 |
Cangzhou | 0.3594 | 0.3777 | 0.3993 | 0.4124 | 0.4353 | 0.4504 | 0.5144 | 0.4913 | 0.5128 | 0.5292 | 0.4977 |
Changde | 0.3822 | 0.4159 | 0.4384 | 0.4645 | 0.4918 | 0.5226 | 0.5449 | 0.5662 | 0.5986 | 0.6325 | 0.5954 |
Changchun | 0.5131 | 0.5562 | 0.5642 | 0.5699 | 0.6039 | 0.6305 | 0.6429 | 0.6618 | 0.6719 | 0.6851 | 0.7038 |
Changsha | 0.5628 | 0.6092 | 0.6284 | 0.6337 | 0.6688 | 0.6975 | 0.7347 | 0.7471 | 0.7745 | 0.7853 | 0.7633 |
Changzhi | 0.3518 | 0.3945 | 0.3990 | 0.4207 | 0.4474 | 0.4730 | 0.5147 | 0.5111 | 0.5373 | 0.4753 | 0.4899 |
Changzhou | 0.4079 | 0.4354 | 0.4744 | 0.4678 | 0.4854 | 0.5059 | 0.5045 | 0.5299 | 0.5495 | 0.5700 | 0.5486 |
Chaoyang | 0.3285 | 0.3461 | 0.3669 | 0.3922 | 0.4068 | 0.4401 | 0.4677 | 0.4649 | 0.4878 | 0.5077 | 0.4788 |
Chaozhou | 0.3272 | 0.3416 | 0.3481 | 0.3761 | 0.3719 | 0.3927 | 0.3858 | 0.4074 | 0.4275 | 0.4464 | 0.4243 |
Chenzhou | 0.3091 | 0.3343 | 0.3623 | 0.3754 | 0.3953 | 0.4146 | 0.4465 | 0.4555 | 0.4742 | 0.4817 | 0.4597 |
Chengdu | 0.5945 | 0.6269 | 0.6843 | 0.6873 | 0.7299 | 0.7551 | 0.7657 | 0.7902 | 0.8237 | 0.8597 | 0.8296 |
Chengde | 0.3530 | 0.3841 | 0.4025 | 0.4163 | 0.4434 | 0.4720 | 0.5075 | 0.5074 | 0.5269 | 0.5506 | 0.5228 |
Chizhou | 0.2679 | 0.3070 | 0.3185 | 0.3225 | 0.3564 | 0.3835 | 0.3708 | 0.3929 | 0.4158 | 0.4357 | 0.4666 |
Chifeng | 0.3502 | 0.3688 | 0.3970 | 0.4125 | 0.4369 | 0.4551 | 0.4759 | 0.4972 | 0.5131 | 0.5066 | 0.5295 |
Chongqing | 0.5642 | 0.5826 | 0.6209 | 0.6435 | 0.6726 | 0.6852 | 0.7099 | 0.7109 | 0.7572 | 0.7360 | 0.7548 |
Chongzuo | 0.2351 | 0.2644 | 0.3020 | 0.3494 | 0.3857 | 0.4275 | 0.4629 | 0.4664 | 0.4859 | 0.4898 | 0.5086 |
Chuzhou | 0.3144 | 0.3432 | 0.3609 | 0.3837 | 0.4004 | 0.4204 | 0.4455 | 0.4599 | 0.4700 | 0.4718 | 0.5005 |
Dazhou | 0.2803 | 0.3127 | 0.3120 | 0.3278 | 0.3460 | 0.3715 | 0.4216 | 0.3997 | 0.4275 | 0.4136 | 0.4051 |
Dalian | 0.5562 | 0.5845 | 0.6112 | 0.6090 | 0.6315 | 0.6540 | 0.6893 | 0.6921 | 0.7019 | 0.7071 | 0.7267 |
Daqing | 0.4195 | 0.4426 | 0.4799 | 0.4664 | 0.4834 | 0.5105 | 0.5302 | 0.5233 | 0.5365 | 0.5507 | 0.5721 |
Datong | 0.3589 | 0.4006 | 0.4205 | 0.4297 | 0.4591 | 0.4759 | 0.5124 | 0.5130 | 0.5377 | 0.5575 | 0.5791 |
Dandong | 0.3934 | 0.4150 | 0.4238 | 0.4344 | 0.4464 | 0.4772 | 0.5219 | 0.5076 | 0.5243 | 0.5390 | 0.5708 |
Deyang | 0.3711 | 0.4402 | 0.4403 | 0.4593 | 0.4862 | 0.5119 | 0.5631 | 0.5504 | 0.5687 | 0.5343 | 0.5511 |
Dezhou | 0.3212 | 0.3592 | 0.3784 | 0.3836 | 0.3978 | 0.4223 | 0.4518 | 0.4497 | 0.4741 | 0.4483 | 0.4812 |
Dingxi | 0.2702 | 0.3051 | 0.3285 | 0.3451 | 0.3708 | 0.3950 | 0.4351 | 0.4325 | 0.4633 | 0.4215 | 0.4879 |
Dongguan | 0.5479 | 0.5810 | 0.6062 | 0.5976 | 0.6256 | 0.6382 | 0.6756 | 0.6858 | 0.7090 | 0.6635 | 0.6921 |
Dongying | 0.4049 | 0.4469 | 0.4635 | 0.4775 | 0.4967 | 0.5028 | 0.5332 | 0.5375 | 0.5602 | 0.5327 | 0.5623 |
Ordos | 0.3707 | 0.3978 | 0.4193 | 0.4303 | 0.4546 | 0.4674 | 0.5250 | 0.5103 | 0.5236 | 0.4719 | 0.5024 |
Ezhou | 0.2324 | 0.2677 | 0.2872 | 0.2938 | 0.3125 | 0.3438 | 0.3708 | 0.3771 | 0.4022 | 0.3640 | 0.3878 |
Fangchenggang | 0.2399 | 0.2980 | 0.3166 | 0.3589 | 0.3766 | 0.3906 | 0.4279 | 0.4168 | 0.4624 | 0.4314 | 0.4574 |
Foshan | 0.5394 | 0.5611 | 0.5781 | 0.5830 | 0.6081 | 0.6172 | 0.6622 | 0.6762 | 0.7045 | 0.6671 | 0.7112 |
Fuzhou | 0.4098 | 0.4433 | 0.4657 | 0.4757 | 0.5003 | 0.5059 | 0.5602 | 0.5499 | 0.5605 | 0.5747 | 0.5922 |
Fushun | 0.3805 | 0.4072 | 0.4184 | 0.4302 | 0.4565 | 0.4459 | 0.4843 | 0.4811 | 0.4845 | 0.4979 | 0.5241 |
Fuzhou | 0.2722 | 0.2969 | 0.3135 | 0.3248 | 0.3483 | 0.3576 | 0.4058 | 0.4169 | 0.4371 | 0.5402 | 0.5804 |
Fuxin | 0.3244 | 0.3583 | 0.3722 | 0.3921 | 0.4051 | 0.4356 | 0.4701 | 0.4704 | 0.4953 | 0.4989 | 0.5080 |
Fuyang | 0.3607 | 0.4057 | 0.4377 | 0.4315 | 0.4755 | 0.5091 | 0.5501 | 0.5467 | 0.5842 | 0.6107 | 0.6340 |
Ganzhou | 0.3266 | 0.3607 | 0.3704 | 0.3877 | 0.4117 | 0.4382 | 0.4756 | 0.4800 | 0.5046 | 0.5141 | 0.5390 |
Guyuan | 0.2268 | 0.2573 | 0.2783 | 0.2903 | 0.3173 | 0.3451 | 0.3879 | 0.3739 | 0.4150 | 0.4331 | 0.4728 |
Guang’an | 0.2965 | 0.3306 | 0.3426 | 0.3672 | 0.4035 | 0.4230 | 0.4343 | 0.4294 | 0.4654 | 0.4707 | 0.4957 |
Guangyuan | 0.3227 | 0.3457 | 0.3688 | 0.3856 | 0.4077 | 0.4386 | 0.4672 | 0.4624 | 0.4760 | 0.4741 | 0.5014 |
Guangzhou | 0.6994 | 0.7224 | 0.7717 | 0.7595 | 0.7738 | 0.8015 | 0.8238 | 0.8432 | 0.8634 | 0.8782 | 0.8991 |
Guigang | 0.2889 | 0.3376 | 0.3654 | 0.3805 | 0.4043 | 0.4312 | 0.4845 | 0.4762 | 0.5296 | 0.5300 | 0.4942 |
Guiyang | 0.4905 | 0.5259 | 0.5664 | 0.5798 | 0.5983 | 0.6165 | 0.6476 | 0.6574 | 0.6775 | 0.6960 | 0.6698 |
Guilin | 0.4325 | 0.4634 | 0.4836 | 0.4956 | 0.5137 | 0.5446 | 0.5842 | 0.5784 | 0.6192 | 0.6349 | 0.6124 |
Harbin | 0.5731 | 0.5814 | 0.6336 | 0.6188 | 0.6456 | 0.6682 | 0.6972 | 0.6916 | 0.7212 | 0.7320 | 0.7083 |
Haikou | 0.5132 | 0.5366 | 0.5824 | 0.5843 | 0.6075 | 0.6274 | 0.6595 | 0.6559 | 0.6838 | 0.6918 | 0.6727 |
Handan | 0.4258 | 0.4617 | 0.4618 | 0.4803 | 0.5111 | 0.5249 | 0.5646 | 0.5556 | 0.5815 | 0.6067 | 0.5767 |
Hanzhong | 0.3410 | 0.3761 | 0.4058 | 0.4107 | 0.4381 | 0.4649 | 0.4872 | 0.4881 | 0.5073 | 0.5128 | 0.5030 |
Hangzhou | 0.6302 | 0.6597 | 0.6910 | 0.6889 | 0.7211 | 0.7456 | 0.7668 | 0.7731 | 0.8015 | 0.8205 | 0.7912 |
Hefei | 0.5149 | 0.5406 | 0.5729 | 0.5886 | 0.6297 | 0.6654 | 0.7053 | 0.7099 | 0.7509 | 0.7275 | 0.7570 |
Hechi | 0.2471 | 0.3044 | 0.3349 | 0.3662 | 0.4004 | 0.4482 | 0.4824 | 0.4750 | 0.4906 | 0.5031 | 0.5239 |
Heyuan | 0.3166 | 0.3344 | 0.3775 | 0.4000 | 0.4277 | 0.4600 | 0.4972 | 0.5179 | 0.5416 | 0.5601 | 0.5892 |
Heze | 0.4014 | 0.4285 | 0.4569 | 0.4600 | 0.4887 | 0.5175 | 0.5452 | 0.5437 | 0.5775 | 0.6020 | 0.6199 |
Hezhou | 0.2464 | 0.2804 | 0.2941 | 0.3208 | 0.3354 | 0.3667 | 0.3980 | 0.4013 | 0.4116 | 0.4114 | 0.4377 |
Hebi | 0.2707 | 0.3006 | 0.3364 | 0.3545 | 0.3592 | 0.3935 | 0.4354 | 0.4517 | 0.4765 | 0.4938 | 0.5221 |
Hegang | 0.2318 | 0.2648 | 0.2873 | 0.2669 | 0.2968 | 0.3206 | 0.3483 | 0.3420 | 0.3731 | 0.3817 | 0.4141 |
Heihe | 0.2297 | 0.2585 | 0.2952 | 0.3018 | 0.3057 | 0.3605 | 0.4058 | 0.3778 | 0.3924 | 0.4036 | 0.4453 |
Hengshui | 0.3772 | 0.4063 | 0.4199 | 0.4352 | 0.4608 | 0.4967 | 0.5566 | 0.5425 | 0.5722 | 0.5825 | 0.6023 |
Hengyang | 0.3803 | 0.4118 | 0.4429 | 0.4641 | 0.4825 | 0.5126 | 0.5625 | 0.5755 | 0.5996 | 0.6145 | 0.5984 |
Hohhot | 0.4660 | 0.5083 | 0.5518 | 0.5563 | 0.5747 | 0.6032 | 0.6215 | 0.6413 | 0.6735 | 0.6299 | 0.6613 |
Huludao | 0.3388 | 0.3844 | 0.3867 | 0.3967 | 0.4084 | 0.4389 | 0.4770 | 0.4780 | 0.4912 | 0.4340 | 0.4746 |
Huzhou | 0.3543 | 0.3810 | 0.4112 | 0.4226 | 0.4295 | 0.4506 | 0.4758 | 0.4923 | 0.5019 | 0.4636 | 0.4869 |
Huaihua | 0.3526 | 0.3964 | 0.4248 | 0.4341 | 0.4606 | 0.4915 | 0.5570 | 0.5410 | 0.5718 | 0.5243 | 0.5715 |
Huai’an | 0.4195 | 0.4509 | 0.4898 | 0.4891 | 0.5066 | 0.5385 | 0.5608 | 0.5861 | 0.6191 | 0.5915 | 0.6330 |
Huaibei | 0.3063 | 0.3437 | 0.3745 | 0.3926 | 0.4174 | 0.4557 | 0.4846 | 0.4841 | 0.5220 | 0.5131 | 0.5418 |
Huainan | 0.3160 | 0.3604 | 0.3868 | 0.4035 | 0.4422 | 0.4786 | 0.5093 | 0.5113 | 0.5464 | 0.5157 | 0.5384 |
Huanggang | 0.3228 | 0.3724 | 0.4016 | 0.4138 | 0.4401 | 0.4688 | 0.5192 | 0.5179 | 0.5568 | 0.5038 | 0.5592 |
Huangshan | 0.3867 | 0.4121 | 0.4419 | 0.4514 | 0.4769 | 0.4936 | 0.5316 | 0.5345 | 0.5556 | 0.5745 | 0.6034 |
Huangshi | 0.3315 | 0.3693 | 0.4001 | 0.4200 | 0.4379 | 0.4686 | 0.5023 | 0.5046 | 0.5444 | 0.5524 | 0.6104 |
Huizhou | 0.3602 | 0.3874 | 0.4290 | 0.4309 | 0.4479 | 0.4630 | 0.4729 | 0.4820 | 0.5008 | 0.5142 | 0.5435 |
Jixi | 0.3057 | 0.3271 | 0.3622 | 0.3525 | 0.3755 | 0.3883 | 0.4047 | 0.4281 | 0.4571 | 0.4496 | 0.5111 |
Ji’an | 0.3304 | 0.3626 | 0.3839 | 0.3966 | 0.4144 | 0.4411 | 0.4848 | 0.4953 | 0.5179 | 0.5354 | 0.5734 |
Jilin | 0.4229 | 0.4383 | 0.4679 | 0.4775 | 0.4932 | 0.5043 | 0.5353 | 0.5393 | 0.5473 | 0.5481 | 0.5569 |
Jinan | 0.5655 | 0.5906 | 0.6312 | 0.6483 | 0.6716 | 0.6890 | 0.7108 | 0.7262 | 0.7630 | 0.7611 | 0.7348 |
Jining | 0.4170 | 0.4463 | 0.4762 | 0.5016 | 0.5211 | 0.5439 | 0.5701 | 0.5705 | 0.5975 | 0.6317 | 0.6164 |
Jiamusi | 0.3269 | 0.3546 | 0.4077 | 0.4028 | 0.4128 | 0.4235 | 0.4897 | 0.4257 | 0.4547 | 0.4762 | 0.4729 |
Jiaxing | 0.4423 | 0.4727 | 0.5016 | 0.5117 | 0.5360 | 0.5538 | 0.5864 | 0.5965 | 0.6435 | 0.6296 | 0.6562 |
Jiayuguan | 0.2239 | 0.2514 | 0.2754 | 0.3331 | 0.3379 | 0.3837 | 0.3963 | 0.4044 | 0.4238 | 0.3442 | 0.3774 |
Jiangmen | 0.4014 | 0.4339 | 0.4670 | 0.4980 | 0.5071 | 0.5273 | 0.5488 | 0.5694 | 0.5935 | 0.5863 | 0.6088 |
Jiaozuo | 0.3902 | 0.4104 | 0.4376 | 0.4592 | 0.4851 | 0.5223 | 0.5356 | 0.5555 | 0.5848 | 0.5302 | 0.5580 |
Jieyang | 0.4119 | 0.4341 | 0.4356 | 0.4511 | 0.4662 | 0.4903 | 0.5035 | 0.5529 | 0.5970 | 0.5582 | 0.5853 |
Jinchang | 0.2131 | 0.2465 | 0.2608 | 0.2955 | 0.3127 | 0.3574 | 0.3534 | 0.3772 | 0.4179 | 0.3960 | 0.4300 |
Jinhua | 0.4611 | 0.4875 | 0.5254 | 0.5307 | 0.5571 | 0.5754 | 0.5960 | 0.6187 | 0.6556 | 0.6528 | 0.6932 |
Jinzhou | 0.3435 | 0.3533 | 0.3776 | 0.3949 | 0.4029 | 0.4115 | 0.4431 | 0.4510 | 0.4901 | 0.4278 | 0.4521 |
Jincheng | 0.3402 | 0.3600 | 0.3815 | 0.4048 | 0.4305 | 0.4586 | 0.4995 | 0.4970 | 0.5279 | 0.5013 | 0.5289 |
Jinzhong | 0.3636 | 0.3672 | 0.3985 | 0.4179 | 0.4450 | 0.4822 | 0.4840 | 0.4972 | 0.5286 | 0.5355 | 0.5572 |
Jingmen | 0.3266 | 0.3408 | 0.3799 | 0.3962 | 0.4197 | 0.4449 | 0.4658 | 0.5030 | 0.5255 | 0.5360 | 0.5756 |
Jingzhou | 0.3095 | 0.3242 | 0.3547 | 0.3595 | 0.3867 | 0.4155 | 0.4483 | 0.4437 | 0.4664 | 0.4649 | 0.5026 |
Jingdezhen | 0.3193 | 0.3446 | 0.3921 | 0.4018 | 0.4295 | 0.4545 | 0.5056 | 0.4856 | 0.5250 | 0.5185 | 0.5555 |
Jiujiang | 0.3540 | 0.3653 | 0.4091 | 0.4268 | 0.4656 | 0.4843 | 0.5425 | 0.5239 | 0.5505 | 0.5784 | 0.6074 |
Jiuquan | 0.3109 | 0.3227 | 0.3463 | 0.3497 | 0.3850 | 0.4223 | 0.4656 | 0.4670 | 0.4764 | 0.4705 | 0.4941 |
Kaifeng | 0.3752 | 0.3728 | 0.4137 | 0.4305 | 0.4640 | 0.4857 | 0.5326 | 0.5358 | 0.5569 | 0.5715 | 0.6040 |
Karamay | 0.2831 | 0.3187 | 0.3337 | 0.3533 | 0.3895 | 0.4146 | 0.4386 | 0.4409 | 0.4617 | 0.4713 | 0.4784 |
Kunming | 0.4843 | 0.5345 | 0.5583 | 0.5820 | 0.5995 | 0.6177 | 0.6541 | 0.6495 | 0.6819 | 0.7155 | 0.7365 |
Laibin | 0.2629 | 0.3099 | 0.3107 | 0.3546 | 0.3805 | 0.4238 | 0.4656 | 0.4615 | 0.4714 | 0.4585 | 0.4796 |
Laiwu | 0.2309 | 0.2852 | 0.2910 | 0.3093 | 0.3194 | 0.3459 | 0.3598 | 0.3737 | 0.4166 | 0.4382 | 0.4557 |
Lanzhou | 0.3639 | 0.4008 | 0.4223 | 0.4469 | 0.4664 | 0.4962 | 0.5203 | 0.5170 | 0.5319 | 0.5333 | 0.5473 |
Langfang | 0.4204 | 0.4628 | 0.4803 | 0.5087 | 0.5409 | 0.5696 | 0.6289 | 0.6099 | 0.6324 | 0.6426 | 0.6626 |
Leshan | 0.3418 | 0.3794 | 0.3882 | 0.4170 | 0.4376 | 0.4667 | 0.5049 | 0.5067 | 0.5184 | 0.5249 | 0.5431 |
Lijiang | 0.2558 | 0.2984 | 0.3282 | 0.3453 | 0.3820 | 0.4077 | 0.4657 | 0.4341 | 0.4646 | 0.4658 | 0.4865 |
Lishui | 0.3996 | 0.4353 | 0.4568 | 0.4784 | 0.5044 | 0.5353 | 0.5688 | 0.5712 | 0.5902 | 0.6063 | 0.6286 |
Lianyungang | 0.4320 | 0.4720 | 0.5029 | 0.4931 | 0.5196 | 0.5476 | 0.5799 | 0.5751 | 0.6056 | 0.6166 | 0.6550 |
Liaoyang | 0.3520 | 0.3713 | 0.3918 | 0.4076 | 0.4201 | 0.4540 | 0.4543 | 0.4516 | 0.4702 | 0.4855 | 0.4988 |
Liaoyuan | 0.3037 | 0.3364 | 0.3365 | 0.3340 | 0.3611 | 0.3800 | 0.4008 | 0.4015 | 0.4267 | 0.4521 | 0.4869 |
Liaocheng | 0.3977 | 0.4356 | 0.4819 | 0.4604 | 0.4887 | 0.5222 | 0.5344 | 0.5411 | 0.5637 | 0.5760 | 0.5985 |
Lincang | 0.2523 | 0.2933 | 0.3067 | 0.3068 | 0.3477 | 0.3846 | 0.4290 | 0.4247 | 0.4587 | 0.4682 | 0.4915 |
Linfen | 0.3598 | 0.3910 | 0.4045 | 0.4236 | 0.4477 | 0.4797 | 0.5385 | 0.5096 | 0.5105 | 0.5255 | 0.5455 |
Linyi | 0.4508 | 0.4860 | 0.5075 | 0.5207 | 0.5409 | 0.5667 | 0.5984 | 0.5926 | 0.6094 | 0.6374 | 0.6522 |
Liuzhou | 0.3291 | 0.3784 | 0.3777 | 0.3970 | 0.4177 | 0.4404 | 0.4579 | 0.4434 | 0.4482 | 0.4546 | 0.4668 |
Lu’an | 0.3872 | 0.4193 | 0.4352 | 0.4558 | 0.5003 | 0.5253 | 0.5582 | 0.5753 | 0.6068 | 0.6306 | 0.6484 |
Liupanshui | 0.2639 | 0.2946 | 0.3370 | 0.3611 | 0.3987 | 0.4282 | 0.4676 | 0.4588 | 0.4747 | 0.4792 | 0.5031 |
Longyan | 0.3573 | 0.3989 | 0.4317 | 0.4604 | 0.4878 | 0.5229 | 0.5457 | 0.5477 | 0.5679 | 0.5767 | 0.5976 |
Longnan | 0.2078 | 0.2358 | 0.2731 | 0.3066 | 0.3418 | 0.3600 | 0.4114 | 0.3534 | 0.4378 | 0.4637 | 0.4922 |
Loudi | 0.3569 | 0.3939 | 0.3929 | 0.4069 | 0.4235 | 0.4475 | 0.5027 | 0.4972 | 0.5230 | 0.5391 | 0.5576 |
Luzhou | 0.2676 | 0.3060 | 0.3195 | 0.3405 | 0.3639 | 0.3868 | 0.4305 | 0.4202 | 0.4358 | 0.4377 | 0.4596 |
Luoyang | 0.4422 | 0.4835 | 0.5124 | 0.5420 | 0.5610 | 0.5935 | 0.6438 | 0.6441 | 0.6580 | 0.6694 | 0.6918 |
Luohe | 0.2831 | 0.3163 | 0.3485 | 0.3643 | 0.3602 | 0.3908 | 0.4228 | 0.4295 | 0.5165 | 0.5435 | 0.5795 |
Luliang | 0.3093 | 0.3610 | 0.3566 | 0.3668 | 0.3890 | 0.4174 | 0.4808 | 0.4600 | 0.4854 | 0.4843 | 0.5234 |
Ma’anshan | 0.3628 | 0.4100 | 0.4385 | 0.4419 | 0.4748 | 0.5300 | 0.5607 | 0.5651 | 0.5894 | 0.6077 | 0.6342 |
Maoming | 0.3564 | 0.4001 | 0.4329 | 0.4447 | 0.4715 | 0.4942 | 0.5180 | 0.5299 | 0.5588 | 0.5597 | 0.5927 |
Meishan | 0.3291 | 0.3639 | 0.3841 | 0.3981 | 0.4178 | 0.4552 | 0.4963 | 0.5004 | 0.5175 | 0.5221 | 0.5568 |
Meizhou | 0.3244 | 0.3428 | 0.3456 | 0.3687 | 0.3877 | 0.3899 | 0.4215 | 0.4418 | 0.4763 | 0.4218 | 0.4453 |
Mianyang | 0.4151 | 0.4481 | 0.4690 | 0.4864 | 0.5143 | 0.5510 | 0.5998 | 0.6083 | 0.6174 | 0.6035 | 0.6235 |
Mudanjiang | 0.3677 | 0.3772 | 0.4373 | 0.4128 | 0.4259 | 0.4515 | 0.4938 | 0.4930 | 0.5168 | 0.5149 | 0.5591 |
Nanchang | 0.4798 | 0.5170 | 0.5456 | 0.5549 | 0.5688 | 0.6009 | 0.6496 | 0.6527 | 0.6770 | 0.6789 | 0.7162 |
Nanchong | 0.3683 | 0.3871 | 0.4044 | 0.4133 | 0.4375 | 0.4706 | 0.5525 | 0.5219 | 0.5288 | 0.5474 | 0.5618 |
Nanjing | 0.6066 | 0.6380 | 0.6945 | 0.6878 | 0.7117 | 0.7466 | 0.7763 | 0.7927 | 0.8214 | 0.8393 | 0.8634 |
Nanning | 0.5101 | 0.5385 | 0.5507 | 0.5735 | 0.5979 | 0.6224 | 0.6575 | 0.6633 | 0.6894 | 0.6954 | 0.7183 |
Nanping | 0.3680 | 0.3950 | 0.4207 | 0.4394 | 0.4727 | 0.4867 | 0.5075 | 0.5166 | 0.5419 | 0.5600 | 0.5919 |
Nantong | 0.4933 | 0.5257 | 0.5486 | 0.5501 | 0.5734 | 0.6033 | 0.6444 | 0.6526 | 0.6749 | 0.6970 | 0.7301 |
Nanyang | 0.3856 | 0.4205 | 0.4404 | 0.4733 | 0.4989 | 0.5365 | 0.5919 | 0.5969 | 0.6265 | 0.6313 | 0.6610 |
Neijiang | 0.2912 | 0.3248 | 0.3269 | 0.3550 | 0.3799 | 0.4099 | 0.4793 | 0.4757 | 0.5033 | 0.4733 | 0.5173 |
Ningbo | 0.5395 | 0.5804 | 0.6110 | 0.6238 | 0.6472 | 0.6655 | 0.7010 | 0.6983 | 0.7315 | 0.7016 | 0.7281 |
Ningde | 0.3886 | 0.4094 | 0.4382 | 0.4432 | 0.4608 | 0.4896 | 0.5362 | 0.5267 | 0.5621 | 0.5326 | 0.5574 |
Panzhihua | 0.3395 | 0.3829 | 0.3901 | 0.4255 | 0.4433 | 0.4711 | 0.5105 | 0.5025 | 0.5248 | 0.4863 | 0.5022 |
Panjin | 0.3420 | 0.3734 | 0.3790 | 0.4021 | 0.4105 | 0.4244 | 0.4707 | 0.4578 | 0.4802 | 0.4556 | 0.4730 |
Pingdingshan | 0.3552 | 0.3832 | 0.4100 | 0.4426 | 0.4396 | 0.4911 | 0.5299 | 0.5175 | 0.5555 | 0.5253 | 0.5577 |
Pingliang | 0.2040 | 0.2559 | 0.2726 | 0.3212 | 0.3301 | 0.3837 | 0.4499 | 0.4050 | 0.4531 | 0.4289 | 0.4598 |
Pingxiang | 0.3051 | 0.3458 | 0.3628 | 0.3761 | 0.3909 | 0.4314 | 0.4754 | 0.4793 | 0.5029 | 0.4712 | 0.4942 |
Putian | 0.3404 | 0.4001 | 0.4172 | 0.4428 | 0.4658 | 0.5055 | 0.5375 | 0.5191 | 0.5639 | 0.5856 | 0.5632 |
Puyang | 0.3278 | 0.3718 | 0.3997 | 0.4265 | 0.4437 | 0.5084 | 0.5409 | 0.5146 | 0.5550 | 0.5665 | 0.5484 |
Qitaihe | 0.2122 | 0.2642 | 0.2908 | 0.2866 | 0.3023 | 0.3356 | 0.3679 | 0.3513 | 0.3705 | 0.3897 | 0.3691 |
Qiqihar | 0.4233 | 0.4308 | 0.4855 | 0.4960 | 0.4889 | 0.5267 | 0.5759 | 0.5359 | 0.5553 | 0.5660 | 0.5510 |
Qinzhou | 0.2674 | 0.3019 | 0.3056 | 0.3377 | 0.3440 | 0.3788 | 0.4027 | 0.3904 | 0.4204 | 0.4384 | 0.4084 |
Qinhuangdao | 0.4248 | 0.4667 | 0.4823 | 0.4960 | 0.5124 | 0.5603 | 0.5804 | 0.5657 | 0.5885 | 0.6090 | 0.5826 |
Qingdao | 0.5417 | 0.5867 | 0.6208 | 0.6572 | 0.6579 | 0.6997 | 0.7295 | 0.7293 | 0.7595 | 0.7798 | 0.7611 |
Qingyuan | 0.3217 | 0.3808 | 0.4053 | 0.4144 | 0.4435 | 0.4768 | 0.5129 | 0.5152 | 0.5479 | 0.5694 | 0.5431 |
Qingyang | 0.3036 | 0.3237 | 0.3023 | 0.3420 | 0.3625 | 0.3946 | 0.4399 | 0.4227 | 0.4585 | 0.4795 | 0.4620 |
Quzhou | 0.3209 | 0.3428 | 0.3661 | 0.3767 | 0.4013 | 0.4244 | 0.4511 | 0.4534 | 0.4765 | 0.4867 | 0.5096 |
Qujing | 0.3053 | 0.3259 | 0.3730 | 0.3806 | 0.4029 | 0.4441 | 0.4874 | 0.4596 | 0.4975 | 0.5230 | 0.5582 |
Quanzhou | 0.3754 | 0.4049 | 0.4350 | 0.4265 | 0.4513 | 0.4787 | 0.5023 | 0.5083 | 0.5179 | 0.5207 | 0.5365 |
Sunshine | 0.3691 | 0.4036 | 0.4235 | 0.4418 | 0.4606 | 0.4912 | 0.5176 | 0.5205 | 0.5448 | 0.5706 | 0.5989 |
Sanmenxia | 0.3231 | 0.3612 | 0.3891 | 0.4142 | 0.4330 | 0.4503 | 0.4751 | 0.4688 | 0.5094 | 0.5225 | 0.5469 |
Sanming | 0.3620 | 0.4003 | 0.4202 | 0.4303 | 0.4589 | 0.4881 | 0.5163 | 0.5100 | 0.5245 | 0.5331 | 0.5547 |
Sanya | 0.4046 | 0.4147 | 0.4467 | 0.4482 | 0.4766 | 0.5054 | 0.5115 | 0.5267 | 0.5590 | 0.5666 | 0.5952 |
Xiamen | 0.5189 | 0.5613 | 0.5969 | 0.6043 | 0.6352 | 0.6685 | 0.6871 | 0.7156 | 0.7401 | 0.7604 | 0.7797 |
Shantou | 0.4460 | 0.4717 | 0.4943 | 0.4918 | 0.5233 | 0.5410 | 0.5582 | 0.5592 | 0.5922 | 0.6008 | 0.6349 |
Shanwei | 0.3135 | 0.3470 | 0.3663 | 0.3606 | 0.3903 | 0.4105 | 0.4479 | 0.4731 | 0.5129 | 0.4827 | 0.5148 |
Shangluo | 0.2729 | 0.3073 | 0.3193 | 0.3168 | 0.3496 | 0.3777 | 0.4017 | 0.4159 | 0.4458 | 0.4612 | 0.4492 |
Shangqiu | 0.3551 | 0.3958 | 0.4016 | 0.4157 | 0.4506 | 0.4782 | 0.5121 | 0.5257 | 0.5570 | 0.5633 | 0.5477 |
Shanghai | 0.6848 | 0.7219 | 0.7889 | 0.7749 | 0.8080 | 0.7881 | 0.8566 | 0.8739 | 0.9168 | 0.9221 | 0.8839 |
Shangrao | 0.3445 | 0.3816 | 0.4013 | 0.4108 | 0.4488 | 0.4309 | 0.5166 | 0.5099 | 0.5402 | 0.5590 | 0.5355 |
Shaoguan | 0.3595 | 0.3933 | 0.4199 | 0.4520 | 0.4636 | 0.4645 | 0.5320 | 0.5345 | 0.5441 | 0.5432 | 0.5339 |
Shaoyang | 0.3511 | 0.3837 | 0.4091 | 0.4290 | 0.4371 | 0.4403 | 0.5152 | 0.5118 | 0.5482 | 0.5674 | 0.5492 |
Shaoxing | 0.4727 | 0.5116 | 0.5302 | 0.5447 | 0.5632 | 0.5611 | 0.6236 | 0.6297 | 0.6522 | 0.6720 | 0.6453 |
Shenzhen | 0.6819 | 0.7367 | 0.7712 | 0.7778 | 0.7945 | 0.7886 | 0.8434 | 0.8605 | 0.8855 | 0.8955 | 0.8568 |
Shenyang | 0.5566 | 0.5924 | 0.6081 | 0.6133 | 0.6268 | 0.6308 | 0.6799 | 0.6889 | 0.7163 | 0.6843 | 0.7110 |
Shiyan | 0.3517 | 0.3922 | 0.4299 | 0.4330 | 0.4460 | 0.4519 | 0.5152 | 0.5265 | 0.5604 | 0.5632 | 0.6003 |
Shijiazhuang | 0.4992 | 0.5413 | 0.5729 | 0.5799 | 0.5960 | 0.5990 | 0.6740 | 0.6697 | 0.6936 | 0.7143 | 0.7314 |
Shizuishan | 0.2770 | 0.3265 | 0.3335 | 0.3371 | 0.3525 | 0.3870 | 0.4179 | 0.4312 | 0.4562 | 0.4741 | 0.4894 |
Shuangyashan | 0.2767 | 0.2984 | 0.3413 | 0.3458 | 0.3607 | 0.3874 | 0.4260 | 0.3818 | 0.4078 | 0.4136 | 0.4495 |
Shuozhou | 0.2594 | 0.2925 | 0.3081 | 0.3222 | 0.3140 | 0.3599 | 0.4006 | 0.3798 | 0.3863 | 0.3925 | 0.4245 |
Siping | 0.3369 | 0.3725 | 0.3816 | 0.4184 | 0.4132 | 0.4409 | 0.4713 | 0.4824 | 0.4962 | 0.4995 | 0.5335 |
Matsubara | 0.3167 | 0.3473 | 0.3567 | 0.3654 | 0.3754 | 0.4140 | 0.4319 | 0.4410 | 0.4465 | 0.4626 | 0.4960 |
Suzhou | 0.4423 | 0.4780 | 0.5260 | 0.5109 | 0.5184 | 0.5446 | 0.5631 | 0.5797 | 0.5986 | 0.6135 | 0.6346 |
Suizhou | 0.2766 | 0.3012 | 0.3292 | 0.3410 | 0.3538 | 0.3763 | 0.4227 | 0.4156 | 0.3996 | 0.3807 | 0.4195 |
Suining | 0.3119 | 0.3731 | 0.3637 | 0.3917 | 0.4138 | 0.4420 | 0.4774 | 0.4930 | 0.4724 | 0.4482 | 0.4662 |
Taizhou | 0.3788 | 0.4125 | 0.4317 | 0.4452 | 0.4547 | 0.4786 | 0.5039 | 0.5074 | 0.5022 | 0.4839 | 0.4659 |
Taiyuan | 0.5155 | 0.5521 | 0.5750 | 0.5955 | 0.6160 | 0.6457 | 0.6667 | 0.6887 | 0.7024 | 0.6610 | 0.6851 |
Taian | 0.4130 | 0.4470 | 0.4741 | 0.4928 | 0.5114 | 0.5388 | 0.5620 | 0.5670 | 0.5835 | 0.5496 | 0.5666 |
Taizhou | 0.3710 | 0.4032 | 0.4077 | 0.4072 | 0.4266 | 0.4592 | 0.4817 | 0.4818 | 0.4779 | 0.4763 | 0.5035 |
Tangshan | 0.4538 | 0.4821 | 0.4864 | 0.5017 | 0.5290 | 0.5506 | 0.5710 | 0.5836 | 0.5826 | 0.5786 | 0.5997 |
Tianjin | 0.5849 | 0.6235 | 0.6432 | 0.6536 | 0.7008 | 0.7211 | 0.7349 | 0.7462 | 0.7597 | 0.7604 | 0.7692 |
Tianshui | 0.3130 | 0.3520 | 0.3682 | 0.4121 | 0.4319 | 0.4549 | 0.4796 | 0.4672 | 0.4815 | 0.4698 | 0.4836 |
Tieling | 0.3302 | 0.3683 | 0.3747 | 0.3898 | 0.4009 | 0.4217 | 0.4769 | 0.4521 | 0.4747 | 0.4442 | 0.4635 |
Tonghua | 0.3647 | 0.3926 | 0.4150 | 0.4054 | 0.4228 | 0.4325 | 0.4973 | 0.4920 | 0.5181 | 0.5247 | 0.5708 |
Tongliao | 0.3282 | 0.3601 | 0.3682 | 0.3970 | 0.4265 | 0.4334 | 0.4576 | 0.4660 | 0.4829 | 0.4937 | 0.5286 |
Tongchuan | 0.2299 | 0.2510 | 0.2634 | 0.2826 | 0.2975 | 0.3288 | 0.3536 | 0.3703 | 0.4036 | 0.4232 | 0.4018 |
Tongling | 0.2827 | 0.3526 | 0.3808 | 0.4063 | 0.4180 | 0.4605 | 0.4849 | 0.4892 | 0.5079 | 0.5398 | 0.5076 |
Weihai | 0.4127 | 0.4571 | 0.4856 | 0.5082 | 0.5253 | 0.5522 | 0.5675 | 0.5816 | 0.6030 | 0.6164 | 0.5949 |
Weifang | 0.4450 | 0.5071 | 0.5410 | 0.5531 | 0.5747 | 0.5931 | 0.6189 | 0.6276 | 0.6490 | 0.6708 | 0.6523 |
Weinan | 0.3475 | 0.4005 | 0.4112 | 0.4251 | 0.4384 | 0.4671 | 0.4941 | 0.4920 | 0.5057 | 0.5344 | 0.5638 |
Wenzhou | 0.4061 | 0.4417 | 0.4696 | 0.4738 | 0.4908 | 0.5237 | 0.5391 | 0.5522 | 0.5520 | 0.5844 | 0.6092 |
Wuhai | 0.2736 | 0.3088 | 0.3308 | 0.3508 | 0.3592 | 0.3913 | 0.4005 | 0.4153 | 0.4384 | 0.4420 | 0.4565 |
Ulanqab | 0.2690 | 0.3436 | 0.3540 | 0.3667 | 0.3906 | 0.4148 | 0.4457 | 0.4403 | 0.4509 | 0.4521 | 0.4742 |
Urumqi | 0.5052 | 0.5238 | 0.5562 | 0.5608 | 0.5855 | 0.6123 | 0.6302 | 0.6489 | 0.6734 | 0.6791 | 0.7000 |
Wuxi | 0.5535 | 0.5884 | 0.6338 | 0.6238 | 0.6409 | 0.6740 | 0.7030 | 0.7122 | 0.7340 | 0.7506 | 0.7792 |
Wuhu | 0.4206 | 0.4622 | 0.4895 | 0.5090 | 0.5487 | 0.5689 | 0.6084 | 0.6265 | 0.6411 | 0.6570 | 0.6851 |
Wuhong | 0.2519 | 0.2956 | 0.3204 | 0.3291 | 0.3612 | 0.3751 | 0.3943 | 0.4348 | 0.4658 | 0.4742 | 0.4987 |
Wuzhou | 0.2824 | 0.3123 | 0.3260 | 0.3147 | 0.3547 | 0.3694 | 0.4064 | 0.4116 | 0.4220 | 0.4392 | 0.4499 |
Wuhan | 0.5906 | 0.6225 | 0.6640 | 0.6756 | 0.6978 | 0.7253 | 0.7467 | 0.7690 | 0.7932 | 0.7939 | 0.8291 |
Wuwei | 0.2829 | 0.2840 | 0.2873 | 0.3233 | 0.3549 | 0.3863 | 0.4193 | 0.4317 | 0.4581 | 0.4749 | 0.4871 |
Xi’an | 0.5987 | 0.6214 | 0.6690 | 0.6768 | 0.6986 | 0.7323 | 0.7562 | 0.7686 | 0.7894 | 0.8028 | 0.8248 |
Xining | 0.3988 | 0.4261 | 0.4533 | 0.4641 | 0.5016 | 0.5203 | 0.5724 | 0.5763 | 0.6089 | 0.6153 | 0.5968 |
Xianning | 0.3319 | 0.3506 | 0.3844 | 0.4058 | 0.4318 | 0.4563 | 0.4638 | 0.5154 | 0.5388 | 0.4835 | 0.5177 |
Xianyang | 0.4076 | 0.4330 | 0.4529 | 0.4534 | 0.4718 | 0.4978 | 0.5450 | 0.5483 | 0.5719 | 0.5837 | 0.5654 |
Xiangtan | 0.3926 | 0.4104 | 0.4413 | 0.4851 | 0.5012 | 0.5225 | 0.5351 | 0.5545 | 0.5825 | 0.6046 | 0.5789 |
Xiaogan | 0.3389 | 0.3691 | 0.4013 | 0.4193 | 0.4397 | 0.4654 | 0.5058 | 0.5179 | 0.5543 | 0.5604 | 0.5575 |
Xinzhou | 0.2842 | 0.3074 | 0.3205 | 0.3348 | 0.3452 | 0.3671 | 0.4026 | 0.3853 | 0.4136 | 0.4190 | 0.4117 |
Xinxiang | 0.4064 | 0.4410 | 0.4486 | 0.4688 | 0.5005 | 0.5355 | 0.5878 | 0.5847 | 0.6118 | 0.6273 | 0.6111 |
Xinyu | 0.2960 | 0.3367 | 0.3476 | 0.3824 | 0.4086 | 0.4348 | 0.4462 | 0.4656 | 0.4943 | 0.5081 | 0.4811 |
Xinyang | 0.3464 | 0.3836 | 0.3942 | 0.4169 | 0.4396 | 0.4908 | 0.5010 | 0.5175 | 0.5439 | 0.5638 | 0.5971 |
Xingtai | 0.3811 | 0.4082 | 0.4143 | 0.4336 | 0.4642 | 0.4920 | 0.5414 | 0.5544 | 0.5751 | 0.5939 | 0.6150 |
Suqian | 0.3788 | 0.4172 | 0.4334 | 0.4437 | 0.4652 | 0.4957 | 0.5343 | 0.5422 | 0.5766 | 0.6190 | 0.6699 |
Suzhou | 0.2848 | 0.3195 | 0.3251 | 0.3706 | 0.4001 | 0.3991 | 0.4494 | 0.4326 | 0.4610 | 0.5879 | 0.6211 |
Xuzhou | 0.3814 | 0.4175 | 0.4467 | 0.4353 | 0.4454 | 0.4644 | 0.5042 | 0.5125 | 0.5423 | 0.5655 | 0.5968 |
Xuchang | 0.3657 | 0.4068 | 0.4199 | 0.4483 | 0.4772 | 0.4944 | 0.5420 | 0.5458 | 0.5779 | 0.6127 | 0.6444 |
Xuancheng | 0.3686 | 0.4054 | 0.4298 | 0.4329 | 0.4595 | 0.4826 | 0.5199 | 0.5328 | 0.5525 | 0.5582 | 0.6016 |
Ya’an | 0.3011 | 0.3523 | 0.3631 | 0.3921 | 0.4162 | 0.4313 | 0.4853 | 0.4822 | 0.5151 | 0.5151 | 0.5488 |
Yantai | 0.4572 | 0.5015 | 0.5281 | 0.5510 | 0.5785 | 0.5953 | 0.6341 | 0.6306 | 0.6590 | 0.6755 | 0.7048 |
Yan’an | 0.2754 | 0.3176 | 0.3249 | 0.3528 | 0.3857 | 0.4081 | 0.4827 | 0.4635 | 0.4688 | 0.4719 | 0.5139 |
Yancheng | 0.4335 | 0.4684 | 0.4971 | 0.4991 | 0.5249 | 0.5503 | 0.5960 | 0.6151 | 0.6578 | 0.6851 | 0.7205 |
Yangzhou | 0.3621 | 0.3975 | 0.4174 | 0.4170 | 0.4370 | 0.4574 | 0.4971 | 0.4922 | 0.5159 | 0.5367 | 0.5569 |
Yangjiang | 0.3201 | 0.3537 | 0.3723 | 0.3866 | 0.4126 | 0.4274 | 0.4581 | 0.4828 | 0.5040 | 0.5165 | 0.5320 |
Yangquan | 0.2945 | 0.3378 | 0.3502 | 0.3699 | 0.3915 | 0.4198 | 0.4511 | 0.4558 | 0.4888 | 0.5097 | 0.5269 |
Yichun | 0.2092 | 0.2526 | 0.2745 | 0.2410 | 0.2755 | 0.2759 | 0.3014 | 0.3042 | 0.3319 | 0.3476 | 0.3814 |
Yibin | 0.3277 | 0.3596 | 0.3789 | 0.4120 | 0.4374 | 0.4656 | 0.5158 | 0.4993 | 0.5301 | 0.5452 | 0.5620 |
Yichang | 0.3875 | 0.4470 | 0.4596 | 0.5044 | 0.5014 | 0.5418 | 0.5619 | 0.5763 | 0.5998 | 0.5977 | 0.6408 |
Yichun | 0.2684 | 0.3014 | 0.3150 | 0.3426 | 0.3582 | 0.3839 | 0.4131 | 0.4412 | 0.4656 | 0.3672 | 0.3495 |
Yiyang | 0.3428 | 0.3811 | 0.3970 | 0.4283 | 0.4418 | 0.4734 | 0.5115 | 0.5306 | 0.5451 | 0.5583 | 0.5824 |
Yinchuan | 0.3904 | 0.4369 | 0.4674 | 0.5169 | 0.5311 | 0.5419 | 0.5820 | 0.5779 | 0.6058 | 0.5693 | 0.5896 |
Yingtan | 0.2657 | 0.3249 | 0.3366 | 0.3672 | 0.3806 | 0.4161 | 0.4701 | 0.4463 | 0.4773 | 0.4266 | 0.4583 |
Yingkou | 0.3908 | 0.4248 | 0.4394 | 0.4566 | 0.4676 | 0.4654 | 0.5320 | 0.5023 | 0.5298 | 0.4975 | 0.5133 |
Yongzhou | 0.2933 | 0.3251 | 0.3341 | 0.3580 | 0.3714 | 0.3891 | 0.4369 | 0.4327 | 0.4607 | 0.4178 | 0.4385 |
Yulin | 0.3303 | 0.3663 | 0.3801 | 0.3981 | 0.4133 | 0.4328 | 0.4654 | 0.4745 | 0.4964 | 0.4958 | 0.5279 |
Yulin | 0.3440 | 0.3842 | 0.3947 | 0.4032 | 0.4449 | 0.4514 | 0.5288 | 0.5251 | 0.5371 | 0.5091 | 0.5335 |
Yuxi | 0.3396 | 0.3704 | 0.3946 | 0.4036 | 0.4399 | 0.4497 | 0.4588 | 0.4739 | 0.5328 | 0.5152 | 0.5441 |
Yueyang | 0.3937 | 0.4311 | 0.4578 | 0.4591 | 0.4951 | 0.5036 | 0.5684 | 0.5441 | 0.5879 | 0.5677 | 0.5960 |
Yunfu | 0.3000 | 0.3240 | 0.3396 | 0.3476 | 0.4141 | 0.4183 | 0.4521 | 0.4581 | 0.4997 | 0.4807 | 0.5099 |
Yuncheng | 0.3796 | 0.3990 | 0.4277 | 0.4283 | 0.4621 | 0.4809 | 0.5689 | 0.5179 | 0.5611 | 0.5530 | 0.5679 |
Zaozhuang | 0.3818 | 0.4063 | 0.4326 | 0.4445 | 0.4678 | 0.4747 | 0.5021 | 0.5267 | 0.5450 | 0.5681 | 0.5949 |
Zhanjiang | 0.4193 | 0.4470 | 0.4708 | 0.4807 | 0.5131 | 0.5324 | 0.5591 | 0.5491 | 0.5694 | 0.5867 | 0.6030 |
Zhangjiajie | 0.3267 | 0.3606 | 0.3742 | 0.3957 | 0.4251 | 0.4448 | 0.4923 | 0.4926 | 0.5169 | 0.5152 | 0.5287 |
Zhangjiakou | 0.3778 | 0.4036 | 0.4297 | 0.4350 | 0.4672 | 0.4925 | 0.5253 | 0.5327 | 0.5509 | 0.5655 | 0.5842 |
Zhangye | 0.2767 | 0.3057 | 0.3267 | 0.3407 | 0.3862 | 0.4107 | 0.4551 | 0.4631 | 0.4791 | 0.4888 | 0.5069 |
Zhangzhou | 0.3413 | 0.3697 | 0.3920 | 0.3902 | 0.4127 | 0.4352 | 0.4719 | 0.4752 | 0.4878 | 0.4848 | 0.4964 |
Zhaotong | 0.2681 | 0.2893 | 0.3216 | 0.3342 | 0.3712 | 0.3900 | 0.4406 | 0.4292 | 0.4703 | 0.4340 | 0.4648 |
Zhaoqing | 0.4132 | 0.4518 | 0.4671 | 0.4737 | 0.4840 | 0.4895 | 0.5527 | 0.5670 | 0.5820 | 0.5641 | 0.5997 |
Zhenjiang | 0.4502 | 0.5023 | 0.5460 | 0.5369 | 0.5701 | 0.5989 | 0.6431 | 0.6332 | 0.6652 | 0.6327 | 0.6616 |
Zhengzhou | 0.4195 | 0.4522 | 0.4728 | 0.4920 | 0.5206 | 0.5461 | 0.5846 | 0.5880 | 0.6345 | 0.6051 | 0.6256 |
Zhongshan | 0.4755 | 0.5104 | 0.5400 | 0.5395 | 0.5646 | 0.5880 | 0.6268 | 0.6397 | 0.6496 | 0.5805 | 0.6059 |
Zhongwei | 0.2126 | 0.2547 | 0.3011 | 0.3149 | 0.3364 | 0.3729 | 0.4114 | 0.4193 | 0.4384 | 0.3980 | 0.4227 |
Zhoushan | 0.4125 | 0.4402 | 0.4823 | 0.5260 | 0.5463 | 0.5645 | 0.5880 | 0.5867 | 0.6019 | 0.6149 | 0.6242 |
Zhoukou | 0.3661 | 0.3773 | 0.4042 | 0.4157 | 0.4477 | 0.4798 | 0.5272 | 0.5304 | 0.5600 | 0.5562 | 0.5906 |
Zhuhai | 0.4748 | 0.5029 | 0.5593 | 0.5686 | 0.5976 | 0.6338 | 0.6689 | 0.6834 | 0.7141 | 0.7258 | 0.7500 |
Zhuzhou | 0.4150 | 0.4471 | 0.4831 | 0.4924 | 0.5157 | 0.5419 | 0.5815 | 0.5922 | 0.6098 | 0.5941 | 0.6121 |
Zhumadian | 0.3530 | 0.3614 | 0.3986 | 0.4183 | 0.4404 | 0.4759 | 0.5170 | 0.5345 | 0.5497 | 0.5599 | 0.5816 |
Ziyang | 0.3227 | 0.3398 | 0.3518 | 0.3789 | 0.4105 | 0.4192 | 0.4553 | 0.4676 | 0.4937 | 0.5091 | 0.5237 |
Zibo | 0.4473 | 0.4747 | 0.5039 | 0.5191 | 0.5416 | 0.5667 | 0.5922 | 0.5930 | 0.6136 | 0.6366 | 0.6683 |
Zigong | 0.3521 | 0.3987 | 0.4029 | 0.4221 | 0.4383 | 0.4690 | 0.5223 | 0.5288 | 0.5473 | 0.5500 | 0.5655 |
Zunyi | 0.3976 | 0.4251 | 0.4428 | 0.4682 | 0.4897 | 0.5171 | 0.5590 | 0.5740 | 0.5803 | 0.5851 | 0.6096 |
Variable | Specific Name | Sample Size | Mean | Median | Standard Deviation | Minimum | Variable |
---|---|---|---|---|---|---|---|
Natural logarithm of regional gross domestic product | 3080 | 7.335 | 7.244 | 0.978 | 5.033 | 10.133 | |
Comprehensive evaluation score for urban digitalization construction level | 3080 | 0.482 | 0.472 | 0.117 | 0.204 | 0.939 | |
Natural logarithm of the number of urban employed persons at the end of the year | 3080 | 3.633 | 3.553 | 0.857 | 1.867 | 6.583 | |
Natural logarithm of the number of industrial enterprises above a designated scale | 3080 | 6.584 | 6.583 | 1.099 | 3.367 | 9.243 | |
Natural logarithm of fixed asset investment | 3080 | 16.382 | 16.411 | 0.982 | 12.352 | 18.651 | |
Natural logarithm of public budget expenditure | 3080 | 13.451 | 13.383 | 1.351 | 10.121 | 17.522 | |
Natural logarithm of telecommunications service revenue | 3080 | 12.521 | 12.432 | 0.976 | 9.667 | 15.582 | |
Natural logarithm of year-end mobile phone users | 3080 | 5.840 | 5.814 | 0.782 | 3.871 | 8.210 | |
Natural logarithm of broadband access users | 3080 | 4.257 | 4.220 | 0.932 | 1.938 | 6.662 | |
Natural logarithm of per capita regional gross domestic product | 3080 | 10.782 | 10.763 | 0.572 | 9.289 | 12.151 | |
Regional gross domestic product growth rate | 3080 | 8.048 | 8.100 | 3.767 | −6.630 | 17.882 | |
Proportion of urban construction land to urban area | 3080 | 0.087 | 0.056 | 0.094 | 0.002 | 0.591 | |
Natural logarithm of innovation index | 3080 | 1.202 | 1.021 | 1.873 | −3.316 | 6.727 | |
Natural logarithm of scientific and technological expenditures | 3080 | 11.451 | 11.582 | 1.464 | 6.690 | 15.441 | |
Proportion of employees in the tertiary industry | 3080 | 0.553 | 0.549 | 0.143 | 0.186 | 0.935 | |
Natural logarithm of the number of information transmission employees | 3080 | 8.361 | 8.206 | 1.128 | 5.278 | 12.853 | |
Proportion of the tertiary industry in GDP | 3080 | 0.430 | 0.425 | 0.105 | 0.192 | 0.773 | |
Natural logarithm of the inclusive financial index | 3080 | 5.140 | 5.280 | 0.539 | 3.461 | 5.914 | |
Greening coverage rate of built-up areas | 3080 | 0.400 | 0.410 | 0.0700 | 0.004 | 0.610 | |
Natural logarithm of the number of green patents applied | 3080 | 5.397 | 5.286 | 1.704 | 1.386 | 10.062 | |
Natural logarithm of industrial sulfur dioxide emissions | 3080 | 9.748 | 9.813 | 1.424 | 5.165 | 13.291 | |
Natural logarithm of carbon dioxide emissions | 3080 | 3.206 | 3.229 | 0.819 | 0.269 | 5.628 |
Primary Indicator | Primary Indicator Weight | Secondary Indicator | Secondary Indicator Weight |
---|---|---|---|
Digital Industry Development | 0.2890 | Digital Inclusive Finance Index ( | 0.1084 |
Share of GDP from Tertiary Industry ( | 0.0734 | ||
Share of Employees in Tertiary Industry ( | 0.0605 | ||
Number of Employees in Information Transmission, Software, and Information Technology Services Industry ( | 0.0468 | ||
Innovation Development | 0.2228 | Innovation Index ( | 0.1833 |
Expenditure on Science and Technology ( | 0.0395 | ||
Ecological Environment | 0.1963 | Green Patent Applications ( | 0.0698 |
Industrial Sulfur Dioxide Emissions ( | 0.0620 | ||
Carbon Dioxide Emissions ( | 0.0495 | ||
Greening Coverage in Built-up Areas ( | 0.0149 | ||
Digital Infrastructure | 0.1692 | Number of Internet Broadband Access Users ( | 0.0638 |
Number of Year-End Mobile Phone Users ( | 0.0607 | ||
Telecom Service Revenue ( | 0.0446 | ||
Overall Economic Level | 0.1227 | Per Capita Regional Gross Domestic Product ( | 0.0578 |
Share of Urban Construction Land in City Area ( | 0.0376 | ||
Regional Gross Domestic Product Growth Rate ( | 0.0274 |
(1) | (2) | ||
---|---|---|---|
0.0013 *** | 0.0011 *** | ||
(10.6225) | (3.7116) | ||
0.1197 | 0.0039 | ||
(1.5530) | (0.0748) | ||
0.3499 *** | 0.3173 *** | ||
(5.8491) | (4.8955) | ||
0.1086 *** | 0.2373 *** | ||
(4.1733) | (7.7841) | ||
−0.0295 | −0.0059 | ||
(−0.6280) | (−0.1080) | ||
2.6095 *** | 1.3016 *** | ||
(6.1966) | (3.0794) | ||
3080 | 3080 | ||
0.2887 | 0.2339 | ||
year | Yes | year | Yes |
province | Yes | province | Yes |
(1) | (2) | ||
---|---|---|---|
0.0876 *** | 0.1720 *** | ||
(6.6464) | (7.0706) | ||
0.1199 * | 0.1093 | ||
(1.6894) | (1.5761) | ||
0.3310 *** | 0.3238 *** | ||
(5.5094) | (5.1393) | ||
0.1601 *** | 0.1523 *** | ||
(5.3580) | (5.1776) | ||
−0.0322 | −0.0244 | ||
(−0.6762) | (−0.5167) | ||
1.6767 *** | 1.6128 *** | ||
(4.3927) | (4.1936) | ||
3080 | 3080 | ||
0.2671 | 0.2742 | ||
year | Yes | year | Yes |
province | Yes | province | Yes |
(1) | (2) | (3) | (4) | ||
---|---|---|---|---|---|
OLS | FE | OLS | FE | ||
−0.0009 *** | 0.0009 ** | 0.0004 *** | 0.0011 *** | ||
(−8.3109) | (2.3026) | (4.3492) | (3.4512) | ||
0.9245 *** | 0.3710 *** | 0.9117 *** | 0.4179 *** | ||
(80.8594) | (3.3180) | (72.7184) | (4.9920) | ||
0.5932 *** | 0.1623 | 0.5147 *** | 0.2371 *** | ||
(30.3937) | (1.4927) | (30.7941) | (3.2996) | ||
0.2483 *** | 0.2321 | 0.2910 *** | 0.1901 | ||
(2.8505) | (1.4826) | (3.1625) | (1.1640) | ||
−0.2476 *** | 0.0827 | −0.4618 *** | 0.2464 ** | ||
(−4.1135) | (0.7608) | (−8.0245) | (1.9933) | ||
−0.0002 | −0.0006 ** | −0.0008 *** | −0.0006 ** | ||
(−0.6576) | (−2.0142) | (−2.8606) | (−2.0194) | ||
−4.1775 *** | 3.1980 ** | −3.3022 *** | 2.1338 *** | ||
(−20.8858) | (2.4630) | (−17.5792) | (4.7796) | ||
3080 | 3080 | 3080 | 3080 | ||
0.8478 | 0.1994 | 0.8424 | 0.1605 | ||
year | Yes | year | Yes | ||
province | Yes | province | Yes |
(1) | (2) | (3) | (4) | ||
---|---|---|---|---|---|
OLS | FE | OLS | FE | ||
0.0543 *** | 0.0600 *** | 0.0257 | 0.1038 *** | ||
(5.6654) | (3.0428) | (1.2430) | (2.7783) | ||
0.8533 *** | 0.3979 *** | 0.8924 *** | 0.3529 *** | ||
(48.8034) | (4.2964) | (36.0008) | (3.4955) | ||
0.4513 *** | 0.1967 ** | 0.5158 *** | 0.2098 ** | ||
(21.5562) | (2.2444) | (30.3988) | (2.4923) | ||
0.2425 *** | 0.2095 | 0.3050 *** | 0.2037 | ||
(2.7628) | (1.3224) | (3.4538) | (1.2193) | ||
−0.4643 *** | 0.1881 * | −0.4298 *** | 0.2407 ** | ||
(−8.9126) | (1.7234) | (−8.2462) | (2.2437) | ||
−0.0006 ** | −0.0005 * | −0.0005 * | −0.0005 | ||
(−1.9650) | (−1.6661) | (−1.7526) | (−1.6494) | ||
−2.5531 *** | 2.4542 *** | −3.3201 *** | 2.4274 *** | ||
(−10.6642) | (3.2569) | (−17.0138) | (2.9353) | ||
3080 | 3080 | 3080 | 3080 | ||
0.8475 | 0.1961 | 0.8451 | 0.1956 | ||
year | Yes | year | Yes | ||
province | Yes | province | Yes |
(1) | (2) | (3) | |
---|---|---|---|
2011–2014 | 2015–2016 | 2017–2019 | |
1.8980 *** | 1.1949 *** | 6.4258 *** | |
(6.8811) | (6.2388) | (9.1206) | |
0.0830 *** | 0.0764 ** | −0.0694 | |
(2.9329) | (2.1217) | (−0.2515) | |
0.1342 *** | 0.0139 | 0.3222 *** | |
(3.3146) | (0.3357) | (2.7555) | |
0.1468 *** | 0.2851 *** | 0.2638 *** | |
(3.2753) | (8.2147) | (4.0602) | |
−0.0010 | −0.0004 | −0.0720 | |
(−0.0570) | (−0.0196) | (−0.6570) | |
2.8846 *** | 1.7660 *** | −2.2119 | |
(5.6273) | (4.1280) | (−1.3027) | |
1120 | 560 | 1400 | |
0.8258 | 0.7535 | 0.2225 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
(1) | (2) | (3) | |
---|---|---|---|
Eastern Region | Central Region | Western Region | |
0.0007 *** | 0.0007 *** | 0.0007 *** | |
(47.1090) | (42.3459) | (34.3354) | |
0.0295 *** | 0.0250 *** | 0.0402 *** | |
(8.5098) | (5.7935) | (5.2229) | |
0.0292 *** | 0.0254 *** | 0.0386 *** | |
(9.9885) | (6.5593) | (10.2636) | |
0.0166 | 0.0475 *** | −0.0019 | |
(1.2896) | (2.6597) | (−0.1585) | |
0.0872 *** | 0.0973 *** | 0.0583 *** | |
(8.4477) | (8.3861) | (4.4240) | |
−0.0002 *** | −0.0002 *** | −0.0002 *** | |
(−12.6247) | (−12.7052) | (−6.6956) | |
−0.1493 *** | −0.1538 *** | −0.3241 *** | |
(−4.0432) | (−3.5815) | (−6.2566) | |
1133 | 902 | 1045 | |
0.9690 | 0.9621 | 0.9636 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
(1) | (2) | (3) | |
---|---|---|---|
Eastern Region | Central Region | Western Region | |
0.0002 *** | 0.0004 *** | 0.0004 *** | |
(3.4412) | (4.7666) | (3.0753) | |
0.1506 *** | 0.0998 *** | 0.1154 *** | |
(8.4374) | (6.5165) | (4.2326) | |
0.1234 *** | 0.1276 *** | 0.1303 *** | |
(11.3885) | (10.3195) | (8.3331) | |
0.0287 | 0.0283 | −0.0023 | |
(0.5805) | (1.1475) | (−0.0729) | |
0.2866 *** | 0.2762 *** | 0.3014 *** | |
(7.6280) | (6.5969) | (6.6740) | |
−0.0000 | −0.0001 ** | −0.0001 *** | |
(−0.8860) | (−2.2779) | (−2.6809) | |
−1.9027 *** | −1.6284 *** | −1.7308 *** | |
(−17.6202) | (−18.3844) | (−17.3274) | |
1133 | 902 | 1045 | |
0.7968 | 0.7833 | 0.8155 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
(1) | (2) | (3) | |
---|---|---|---|
Eastern Region | Central Region | Western Region | |
0.0868 *** | 0.0377 | 0.0606 | |
(3.5842) | (1.5787) | (1.1979) | |
0.4476 ** | 0.4453 *** | 0.3224 *** | |
(2.2487) | (4.2659) | (2.6310) | |
0.2011 * | 0.1338 | 0.2215 | |
(1.7422) | (1.1016) | (1.2168) | |
0.6408 *** | 0.0407 | −0.2401 | |
(3.2960) | (0.1034) | (−0.9046) | |
0.2268 | 0.3697 ** | −0.0964 | |
(1.4889) | (2.1621) | (−0.5085) | |
−0.0005 | 0.0005 | −0.0012 * | |
(−1.3527) | (1.1370) | (−1.7670) | |
2.1460 * | 2.5651 *** | 2.7647 * | |
(1.6678) | (2.9145) | (1.8200) | |
1133 | 902 | 1045 | |
0.8725 | 0.8873 | 0.8997 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
(1) | (2) | (3) | |
---|---|---|---|
Eastern Region | Central Region | Western Region | |
0.0750 *** | 0.0684 *** | 0.0722 *** | |
(9.0329) | (12.1247) | (8.0962) | |
0.0118 | 0.0327 *** | 0.0386 * | |
(0.6528) | (3.2975) | (1.7426) | |
0.0718 *** | 0.0740 *** | 0.0858 *** | |
(6.4117) | (8.4245) | (7.9130) | |
0.0017 | 0.0203 | −0.0254 | |
(0.0349) | (1.0269) | (−1.0370) | |
0.2389 *** | 0.1728 *** | 0.2289 *** | |
(7.3876) | (7.9236) | (7.1152) | |
−0.0001 *** | −0.0002 *** | −0.0001 *** | |
(−3.4111) | (−4.8939) | (−2.6988) | |
−0.8112 *** | −0.8846 *** | −1.0806 *** | |
(−4.6713) | (−8.8349) | (−9.8263) | |
1133 | 902 | 1045 | |
0.8382 | 0.8927 | 0.8820 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
References
- Acemoglu, Daron, and Pascual Restrepo. 2022. Tasks, Automation, and the Rise in U.S. Wage Inequality. Econometrica 90: 1973–2016. [Google Scholar] [CrossRef]
- Alderete, María Verónica. 2020. Exploring the Smart City Indexes and the Role of Macro Factors for Measuring Cities Smartness. Social Indicators Research 147: 567–89. [Google Scholar] [CrossRef]
- Ali, Muhammad. 2017. Determinants of Related and Unrelated Export Diversification. Economies 5: 50. [Google Scholar] [CrossRef]
- Allcott, Hunt, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow. 2020. The Welfare Effects of Social Media. American Economic Review 110: 629–76. [Google Scholar] [CrossRef]
- Allcott, Hunt, Matthew Gentzkow, and Lena Song. 2022. Digital Addiction. American Economic Review 112: 2424–63. [Google Scholar] [CrossRef]
- Ariffin, Khairul Akram Zainol, and Faris Hanif Ahmad. 2021. Indicators for maturity and readiness for digital forensic investigation in era of industrial revolution 4.0. Computers & Security 105: 102237. [Google Scholar] [CrossRef]
- Atitallah, Safa Ben, Maha Driss, Wadii Boulila, and Henda Ben Ghézala. 2020. Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Computer Science Review 38: 100303. [Google Scholar] [CrossRef]
- Austin, Mark, Parastoo Delgoshaei, Maria Coelho, and Mohammad Heidarinejad. 2020. Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach. Journal of Management in Engineering 36: 04020026. [Google Scholar] [CrossRef]
- Avgerou, Chrisanthi. 1991. The Informational City: Information Technology Economic Restructuring and the Urban Regional Process. European Journal of Information Systems 1: 76–77. [Google Scholar] [CrossRef]
- Barwick, Panle Jia, Yanyan Liu, Eleonora Patacchini, and Qi Wu. 2023. Information, Mobile Communication, and Referral Effects. American Economic Review 113: 1170–207. [Google Scholar] [CrossRef]
- Beraja, Martin, Andrew Kao, David Y. Yang, and Noam Yuchtman. 2023a. AI-tocracy. The Quarterly Journal of Economics 138: 1349–402. [Google Scholar] [CrossRef]
- Beraja, Martin, David Y. Yang, and Noam Yuchtman. 2023b. Data-intensive Innovation and the State: Evidence from AI Firms in China. The Review of Economic Studies 90: 1701–23. [Google Scholar] [CrossRef]
- Borowiecki, Ryszard, Barbara Siuta-Tokarska, Jolanta Maroń, Marcin Suder, Agnieszka Thier, and Katarzyna Żmija. 2021. Developing Digital Economy and Society in the Light of the Issue of Digital Convergence of the Markets in the European Union Countries. Energies 14: 2717. [Google Scholar] [CrossRef]
- Cahyadi, Afriyadi, and Róbert Magda. 2021. Digital Leadership in the Economies of the G20 Countries: A Secondary Research. Economies 9: 32. [Google Scholar] [CrossRef]
- Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolò, and Sergio Pastorello. 2020. Artificial Intelligence, Algorithmic Pricing, and Collusion. American Economic Review 110: 3267–97. [Google Scholar] [CrossRef]
- Cao, Lingling, Huawei Niu, and Yifeng Wang. 2022. Utility analysis of digital villages to empower balanced urban-rural development based on the three-stage DEA-Malmquist model. PLoS ONE 17: e0270952. [Google Scholar] [CrossRef] [PubMed]
- Castro, Conceição, and Cristina Lopes. 2022. Digital Government and Sustainable Development. Journal of the Knowledge Economy 13: 880–903. [Google Scholar] [CrossRef]
- Chen, Bin, Chen Lin, Peng Gong, and Jiafu An. 2023. Optimize urban shade using digital twins of cities. Nature 622: 242. [Google Scholar] [CrossRef]
- Chen, Kunqiu, Hualou Long, Liuwen Liao, Shuangshuang Tu, and Tingting Li. 2020. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 92: 104465. [Google Scholar] [CrossRef]
- Chen, Nan, and Yunpeng Yang. 2023. The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention. Journal of Theoretical and Applied Electronic Commerce Research 18: 1601–18. [Google Scholar] [CrossRef]
- Cheng, Cong, and Limin Wang. 2022. How companies configure digital innovation attributes for business model innovation? A configurational view. Technovation 112: 102398. [Google Scholar] [CrossRef]
- Cong, Xuhui, Sai Wang, Liang Wang, Jonas Šaparauskas, Jarosław Górecki, and Miroslaw J. Skibniewski. 2022. Allocation Efficiency Measurement and Spatio-Temporal Differences Analysis of Digital Infrastructure: The Case of China’s Shandong Province. Systems 10: 205. [Google Scholar] [CrossRef]
- Costinot, Arnaud, and Iván Werning. 2023. Robots, Trade, and Luddism: A Sufficient Statistic Approach to Optimal Technology Regulation. The Review of Economic Studies 90: 2261–91. [Google Scholar] [CrossRef]
- Deng, Haiyan, Ge Bai, Zhiyang Shen, and Lanqi Xia. 2022. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. Journal of Cleaner Production 378: 134539. [Google Scholar] [CrossRef]
- Einav, Liran, Chiara Farronato, Jonathan Levin, and Neel Sundaresan. 2018. Auctions versus Posted Prices in Online Markets. Journal of Political Economy 126: 178–215. [Google Scholar] [CrossRef]
- ElMassah, Suzanna, and Mahmoud Mohieldin. 2020. Digital transformation and localizing the Sustainable Development Goals (SDGs). Ecological Economics 169: 106490. [Google Scholar] [CrossRef]
- Fernandes, Catarina, Rui Pires, and Maria-Ceu Gaspar Alves. 2023. Digital Entrepreneurship and Sustainability: The State of the Art and Research Agenda. Economies 11: 3. [Google Scholar] [CrossRef]
- García-Vandewalle García, José Manuel, Marina García-Carmona, Juan Manuel Trujillo Torres, and Pablo Moya Fernández. 2023. Analysis of digital competence of educators (DigCompEdu) in teacher trainees: The context of Melilla, Spain. Technology, Knowledge and Learning 28: 585–612. [Google Scholar] [CrossRef]
- Goloshchapova, Tatiana, Vladimir Yamashev, Natalia Skornichenko, and Wadim Strielkowski. 2023. E-Government as a Key to the Economic Prosperity and Sustainable Development in the Post-COVID Era. Economies 11: 112. [Google Scholar] [CrossRef]
- Graham, Stephen. 2002. Bridging Urban Digital Divides? Urban Polarisation and Information and Communications Technologies (ICTs). Urban Studies 39: 33–56. [Google Scholar] [CrossRef]
- Guo, Bingnan, Yu Wang, Hao Zhang, Chunyan Liang, Yu Feng, and Feng Hu. 2023. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Economic Modelling 120: 106194. [Google Scholar] [CrossRef]
- Han, Wenjing, Xiaoling Zhang, and Xian Zheng. 2020. Land use regulation and urban land value: Evidence from China. Land Use Policy 92: 104432. [Google Scholar] [CrossRef]
- Harwit, Eric. 2004. Spreading Telecommunications to Developing Areas in China: Telephones, the Internet and the Digital Divide. The China Quarterly 180: 1010–30. [Google Scholar] [CrossRef]
- Hills, Gage, Christian Lau, Andrew Wright, Samuel Fuller, Mindy D. Bishop, Tathagata Srimani, Pritpal Kanhaiya, Rebecca Ho, Aya Amer, Yosi Stein, and et al. 2019. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572: 595–602. [Google Scholar] [CrossRef] [PubMed]
- Huang, Jie, Huali Jin, Xuhui Ding, and Aihua Zhang. 2023. A Study on the Spatial Correlation Effects of Digital Economy Development in China from a Non-Linear Perspective. Systems 11: 63. [Google Scholar] [CrossRef]
- Jemiluyi, Olufunmilayo Olayemi, and Leward Jeke. 2023. How Catalytic Is Digital Technology in the Nexus between Migrants’ Remittance and Financial Development in Sub-Saharan African Countries? Economies 11: 74. [Google Scholar] [CrossRef]
- Jensen, Robert. 2007. The Digital Provide: Information (Technology), Market Performance, and Welfare in the South Indian Fisheries Sector. The Quarterly Journal of Economics 122: 879–924. [Google Scholar] [CrossRef]
- Jiang, Dingfu. 2020. The construction of smart city information system based on the Internet of Things and cloud computing. Computer Communications 150: 158–66. [Google Scholar] [CrossRef]
- Kaginalkar, Akshara, Shamita Kumar, Prashant Gargava, and Dev Niyogi. 2021. Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Climate 39: 100972. [Google Scholar] [CrossRef]
- Karle, Heiko, Martin Peitz, and Markus Reisinger. 2020. Segmentation versus Agglomeration: Competition between Platforms with Competitive Sellers. Journal of Political Economy 128: 2329–74. [Google Scholar] [CrossRef]
- Kettinger, William J. 1994. National infrastructure diffusion and the U.S. information super highway. Information & Management 27: 357–68. [Google Scholar] [CrossRef]
- Knox, Paul L., and M. Castells. 1995. The Informational City. Information Technology, Economic Restructuring, and the Urban-Regional Process. The Geographical Journal 161: 94. [Google Scholar] [CrossRef]
- Korgun, Irina, and Altin Hoti. 2023. Dynamics of Bilateral Digital Trade: The Case of a Korea–EU Digital Partnership. Economies 11: 248. [Google Scholar] [CrossRef]
- Kutty, Adeeb A., Murat Kucukvar, Galal M. Abdella, Muhammet Enis Bulak, and Nuri Cihat Onat. 2022. Sustainability Performance of European Smart Cities: A Novel DEA Approach with Double Frontiers. Sustainable Cities and Society 81: 103777. [Google Scholar] [CrossRef]
- Laitsou, Eleni, Antonios Kargas, and Dimitris Varoutas. 2020. Digital Competitiveness in the European Union Era: The Greek Case. Economies 8: 85. [Google Scholar] [CrossRef]
- Lan, Mudan, and Yuke Zhu. 2023. Digital infrastructure construction, carbon total factor productivity, and carbon rebound effect. Environmental Science and Pollution Research 30: 88968–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, Chien-Chiang, Ying Yuan, and Huwei Wen. 2022. Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China. Natural Resources Forum 46: 289–310. [Google Scholar] [CrossRef]
- Lefatsa, Palesa Milliscent, Kin Sibanda, and Rufaro Garidzirai. 2021. The Relationship between Financial Development and Energy Consumption in South Africa. Economies 9: 158. [Google Scholar] [CrossRef]
- Li, Xiaomin, and Colin F. Camerer. 2022. Predictable effects of visual salience in experimental decisions and games. The Quarterly Journal of Economics 137: 1849–900. [Google Scholar] [CrossRef]
- Li, Xiaoming, Hao Liu, Weixi Wang, Ye Zheng, Haibin Lv, and Zhihan Lv. 2022. Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning. Future Generation Computer Systems 128: 167–77. [Google Scholar] [CrossRef]
- Lin, Jiesen, Lemuria Carter, and Dapeng Liu. 2021. Privacy concerns and digital government: Exploring citizen willingness to adopt the COVIDSafe app. European Journal of Information Systems 30: 1–14. [Google Scholar] [CrossRef]
- Liu, Jing, Chin-Hong Puah, Mohammad Affendy Arip, and Meng-Chang Jong. 2023. Impacts of Digital Financial Inclusion on Urban–Rural Income Disparity: A Comparative Research of the Eastern and Western Regions in China. Economies 11: 282. [Google Scholar] [CrossRef]
- Liu, Tinghua, Mengyuan Hu, Ehsan Elahi, and Xiao Liu. 2022. Does digital finance affect the quality of economic growth? Analysis based on Chinese city data. Frontiers in Environmental Science 10: 951420. [Google Scholar] [CrossRef]
- Loebbing, Jonas. 2022. An Elementary Theory of Directed Technical Change and Wage Inequality. The Review of Economic Studies 89: 411–51. [Google Scholar] [CrossRef]
- Lu, Sha, Yiyun Zhao, Zhouqi Chen, Mengke Dou, Qingchun Zhang, and Weixin Yang. 2021. Association between Atrial Fibrillation Incidence and Temperatures, Wind Scale and Air Quality: An Exploratory Study for Shanghai and Kunming. Sustainability 13: 5247. [Google Scholar] [CrossRef]
- Malecki, Edward J. 2003. Digital development in rural areas: Potentials and pitfalls. Journal of Rural Studies 19: 201–14. [Google Scholar] [CrossRef]
- Maresova, Petra, Ivan Soukal, Libuse Svobodova, Martina Hedvicakova, Ehsan Javanmardi, Ali Selamat, and Ondrej Krejcar. 2018. Consequences of Industry 4.0 in Business and Economics. Economies 6: 46. [Google Scholar] [CrossRef]
- Marshall, Will. 2023. Governance: A Pugwash council for the digital age. Nature 621: 691. [Google Scholar] [CrossRef]
- Masik, Grzegorz, Iwona Sagan, and James W. Scott. 2021. Smart City strategies and new urban development policies in the Polish context. Cities 108: 102970. [Google Scholar] [CrossRef]
- Mitrović, Đorđe. 2020. Measuring the efficiency of digital convergence. Economics Letters 188: 108982. [Google Scholar] [CrossRef]
- Mpofu, Favourate Y. 2022. Taxation of the Digital Economy and Direct Digital Service Taxes: Opportunities, Challenges, and Implications for African Countries. Economies 10: 219. [Google Scholar] [CrossRef]
- Mpofu, Favourate Y., and David Mhlanga. 2022. Digital Financial Inclusion, Digital Financial Services Tax and Financial Inclusion in the Fourth Industrial Revolution Era in Africa. Economies 10: 184. [Google Scholar] [CrossRef]
- Ndubuisi, Gideon, Chuks Otioma, and Godsway Korku Tetteh. 2021. Digital infrastructure and employment in services: Evidence from Sub-Saharan African countries. Telecommunications Policy 45: 102153. [Google Scholar] [CrossRef]
- Nicolas, Clément, Jinwoo Kim, and Seokho Chi. 2020. Quantifying the dynamic effects of smart city development enablers using structural equation modeling. Sustainable Cities and Society 53: 101916. [Google Scholar] [CrossRef]
- Nochta, T., L. Wan, J. M. Schooling, and A. K. Parlikad. 2021. A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. Journal of Urban Technology 28: 263–87. [Google Scholar] [CrossRef]
- Ogujiuba, Kanayo, and Ntombifuthi Mngometulu. 2022. Does Social Investment Influence Poverty and Economic Growth in South Africa: A Cointegration Analysis? Economies 10: 226. [Google Scholar] [CrossRef]
- Pauliuk, Stefan, Maximilian Koslowski, Kavya Madhu, Simon Schulte, and Sebastian Kilchert. 2022. Co-design of digital transformation and sustainable development strategies—What socio-metabolic and industrial ecology research can contribute. Journal of Cleaner Production 343: 130997. [Google Scholar] [CrossRef]
- Pedrosa, Glauco Vitor, Ricardo A. D. Kosloski, Vitor G. De Menezes, Gabriela Y. Iwama, Wander C. M. P. Da Silva, and Rejane M. Da C. Figueiredo. 2020. A Systematic Review of Indicators for Evaluating the Effectiveness of Digital Public Services. Information 11: 472. [Google Scholar] [CrossRef]
- Peng, Weibin, Liuqing Fang, and Xiaojing Lin. 2022. Digital Governance for Smart City and Future Community Building: From Concept to Application. Singapore: Springer Nature, pp. 41–67. [Google Scholar]
- Peng, Yongzhang, and Changqi Tao. 2022. Can digital transformation promote enterprise performance?—From the perspective of public policy and innovation. Journal of Innovation & Knowledge 7: 100198. [Google Scholar] [CrossRef]
- Peng, Zhuangzhuang, and Ting Dan. 2023. Digital dividend or digital divide? Digital economy and urban-rural income inequality in China. Telecommunications Policy 47: 102616. [Google Scholar] [CrossRef]
- Popkova, Elena G., and Kantoro Gulzat. 2020. Contradiction of the Digital Economy: Public Well-Being vs. Cyber Threats. Cham: Springer International Publishing, pp. 112–24. [Google Scholar]
- Qi, Guangzhi, Zhibao Wang, Zhixiu Wang, and Lijie Wei. 2022. Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy. Sustainability 14: 8967. [Google Scholar] [CrossRef]
- Ramdani, Boumediene, Siddhartha Raja, and Marina Kayumova. 2022. Digital innovation in SMEs: A systematic review, synthesis and research agenda. Information Technology for Development 28: 56–80. [Google Scholar] [CrossRef]
- Ren, Shuming, Lianqing Li, Yueqi Han, Yu Hao, and Haitao Wu. 2022. The emerging driving force of inclusive green growth: Does digital economy agglomeration work? Business Strategy and the Environment 31: 1656–78. [Google Scholar] [CrossRef]
- Ren, Xiaohang, Gudian Zeng, and Giray Gozgor. 2023. How does digital finance affect industrial structure upgrading? Evidence from Chinese prefecture-level cities. Journal of Environmental Management 330: 117125. [Google Scholar] [CrossRef] [PubMed]
- Sotolongo, Marisa. 2023. Defining environmental justice communities: Evaluating digital infrastructure in Southeastern states for Justice40 benefits allocation. Applied Geography 158: 103057. [Google Scholar] [CrossRef]
- Sun, Minglin, and Jian Zhang. 2020. Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Computer Communications 149: 332–42. [Google Scholar] [CrossRef]
- Supari, Supari, and Hendranata Anton. 2022. The Impact of the National Economic Recovery Program and Digitalization on MSME Resilience during the COVID-19 Pandemic: A Case Study of Bank Rakyat Indonesia. Economies 10: 160. [Google Scholar] [CrossRef]
- Travkina, Elena Vladimirovna, Alim Borisovich Fiapshev, and Marianna Tolevna Belova. 2022. Stablecoin-Based Digital Trading and Investment Platforms and Their Potential in Overcoming Sanctions Restrictions. Economies 10: 246. [Google Scholar] [CrossRef]
- Veretennikova, Anna Y., and Daria A. Selezneva. 2023. Development of Regulatory Strategies in the Sharing Economy: The Application of Game Theory. Economies 11: 298. [Google Scholar] [CrossRef]
- Wang, Di, Tao Zhou, and Mengmeng Wang. 2021. Information and communication technology (ICT), digital divide and urbanization: Evidence from Chinese cities. Technology in Society 64: 101516. [Google Scholar] [CrossRef]
- Wang, Jianda, Kangyin Dong, Xiucheng Dong, and Farhad Taghizadeh-Hesary. 2022. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Economics 113: 106198. [Google Scholar] [CrossRef]
- Williamson, Stephen. 2022. Central Bank Digital Currency: Welfare and Policy Implications. Journal of Political Economy 130: 2829–61. [Google Scholar] [CrossRef]
- Wu, Liu, Xiaowen Wan, Atif Jahanger, Mengyi Li, Muntasir Murshed, and Daniel Balsalobre-Lorente. 2023. Does the digital economy reduce air pollution in China? A perspective from industrial agglomeration. Energy Reports 9: 3625–41. [Google Scholar] [CrossRef]
- Xia, Chang, Anthony Gar-On Yeh, and Anqi Zhang. 2020. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landscape and Urban Planning 193: 103669. [Google Scholar] [CrossRef]
- Xia, Haishan, Zishuo Liu, Maria Efremochkina, Xiaotong Liu, and Chunxiang Lin. 2022. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustainable Cities and Society 84: 104009. [Google Scholar] [CrossRef]
- Yang, Lifan, Jiatian Dong, and Weixin Yang. 2024. Analysis of Regional Competitiveness of China’s Cross-Border E-Commerce. Sustainability 16: 1007. [Google Scholar] [CrossRef]
- Yang, Weixin, Lingying Pan, and Qinyi Ding. 2023a. Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation. Energy 282: 128764. [Google Scholar] [CrossRef]
- Yang, Weixin, Yue Hu, Qinyi Ding, Hao Gao, and Lingguang Li. 2023b. Comprehensive Evaluation and Comparative Analysis of the Green Development Level of Provinces in Eastern and Western China. Sustainability 15: 3965. [Google Scholar] [CrossRef]
- Yang, Yunpeng, Hongmin Chen, and Hejun Liang. 2023c. Did New Retail Enhance Enterprise Competition during the COVID-19 Pandemic? An Empirical Analysis of Operating Efficiency. Journal of Theoretical and Applied Electronic Commerce Research 18: 352–71. [Google Scholar] [CrossRef]
- Yang, Yunpeng, Nan Chen, and Hongmin Chen. 2023d. The Digital Platform, Enterprise Digital Transformation, and Enterprise Performance of Cross-Border E-Commerce—From the Perspective of Digital Transformation and Data Elements. Journal of Theoretical and Applied Electronic Commerce Research 18: 777–94. [Google Scholar] [CrossRef]
- Yang, Zhen, Weijun Gao, Qing Han, Liyan Qi, Yajie Cui, and Yuqing Chen. 2022. Digitalization and carbon emissions: How does digital city construction affect china’s carbon emission reduction? Sustainable Cities and Society 87: 104201. [Google Scholar] [CrossRef]
- Zekić-Sušac, Marijana, Saša Mitrović, and Adela Has. 2021. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. International Journal of Information Management 58: 102074. [Google Scholar] [CrossRef]
- Zhang, Dan, Loogeok. G. Pee, Shan L. Pan, and Lili Cui. 2022a. Big data analytics, resource orchestration, and digital sustainability: A case study of smart city development. Government Information Quarterly 39: 101626. [Google Scholar] [CrossRef]
- Zhang, Jinning, Yanwei Lyu, Yutao Li, and Yong Geng. 2022b. Digital economy: An innovation driving factor for low-carbon development. Environmental Impact Assessment Review 96: 106821. [Google Scholar] [CrossRef]
- Zhang, Wei, Xuemeng Liu, Die Wang, and Jianping Zhou. 2022c. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 165: 112927. [Google Scholar] [CrossRef]
- Zheng, Chuanjun, Jingfeng Yuan, Lei Zhu, Yajing Zhang, and Qiuhu Shao. 2020. From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. Journal of Cleaner Production 258: 120689. [Google Scholar] [CrossRef]
- Zhu, Wenjing, and Jianjun Chen. 2022. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities 123: 103563. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicator | Unit | Indicator Type |
---|---|---|---|
Digital Infrastructure | Telecommunication Revenue () | CNY | Positive |
End-of-Year Mobile Phone Users () | 10,000 Households | Positive | |
Internet Broadband Access Users () | 10,000 Households | Positive | |
Overall Economic Level | Per Capita Regional GDP () | CNY | Positive |
GDP Growth Rate () | % | Positive | |
Urban Construction Land as a Percentage of Municipal Area () | % | Positive | |
Innovation Development Level | Innovation Index () | / | Positive |
Expenditure on Science and Technology () | CNY | Positive | |
Digital Industry Development Status | Proportion of Tertiary Industry Employees () | % | Positive |
Employees in Information Transmission, Software, and Information Technology Services () | 10,000 People | Positive | |
Proportion of Tertiary Industry in GDP () | % | Positive | |
Digital Inclusive Finance Index () | / | Positive | |
Ecological Environment Conditions | Greening Coverage of Built-up Areas () | % | Positive |
Number of Green Patents Applied () | Units | Positive | |
Industrial Sulfur Dioxide Emissions () | 10,000 Tons | Negative | |
Carbon Dioxide Emissions () | 10,000 Tons | Negative |
Primary Indicator | Primary Indicator Weight | Secondary Indicator | Secondary Indicator Weight |
---|---|---|---|
Digital Infrastructure | 0.1692 | Telecommunication Revenue () | 0.0446 |
End-of-Year Mobile Phone Users () | 0.0607 | ||
Internet Broadband Access Users () | 0.0638 | ||
Overall Economic Level | 0.1227 | Per Capita Regional GDP () | 0.0578 |
GDP Growth Rate () | 0.0274 | ||
Urban Construction Land as a Percentage of Municipal Area () | 0.0376 | ||
Innovation Development | 0.2228 | Innovation Index () | 0.1833 |
Expenditure on Science and Technology () | 0.0395 | ||
Digital Industry Development Status | 0.2890 | Proportion of Tertiary Industry Employees () | 0.0605 |
Employees in Information Transmission, Software, and Information Technology Services () | 0.0468 | ||
Proportion of Tertiary Industry in GDP () | 0.0734 | ||
Digital Inclusive Finance Index () | 0.1084 | ||
Ecological Environment Conditions | 0.1963 | Greening Coverage of Built-up Areas () | 0.0149 |
Number of Green Patents Applied () | 0.0698 | ||
Industrial Sulfur Dioxide Emissions () | 0.0620 | ||
Carbon Dioxide Emissions () | 0.0495 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
OLS | 2SLS | OLS | 2SLS | OLS | 2SLS | OLS | 2SLS | |
Second stage | ||||||||
6.2341 *** (77.3740) | 9.1571 *** (56.6460) | 2.1390 *** (16.6791) | 1.661 *** (2.6093) | 1.2632 *** (11.3900) | 2.4478 *** (7.0686) | 1.1058 *** (6.1547) | 2.5731 *** (11.3978) | |
0.4711 *** (26.5348) | 0.3929 *** (13.8294) | 0.1267 * (1.7031) | 0.1282 *** (2.9278) | |||||
0.2316 *** | 0.2489 *** | 0.3256 *** | 0.3459 *** | |||||
(15.5896) | (18.4672) | (5.4253) | (11.3756) | |||||
0.2045 *** | 0.1365 *** | 0.1555 *** | 0.1152 *** | |||||
(9.7338) | (5.7467) | (4.8843) | (4.5678) | |||||
−0.0405 | −0.0564 | −0.0279 | −0.0347 | |||||
(−0.7668) | (−1.0448) | (−0.5815) | (−0.6778) | |||||
4.3292 *** | 2.9199 *** | 6.3037 *** | 6.5344 *** | 0.2034 | 0.9447 *** | 1.6907 *** | 3.1551 *** | |
(106.9652) | (36.9279) | (101.9463) | (21.2872) | (0.7590) | (3.2521) | (4.1097) | (8.5837) | |
3080 | 3080 | 3080 | 3080 | 3080 | 3080 | 3080 | 3080 | |
0.5519 | 0.8590 | 0.1618 | 0.2643 | |||||
year | No | No | Yes | Yes | Yes | Yes | Yes | Yes |
city | No | No | Yes | Yes | Yes | Yes | Yes | Yes |
First stage | ||||||||
0.0729 *** (55.2808) | 0.0242 *** (7.7671) | 0.0403 *** (15.6866) | 0.0151 *** (5.2663) | |||||
0.4306 | 0.1537 | 0.8512 | 0.1377 | |||||
F Statistic on IV | 1534.468 | 60.328 | 246.070 | 27.734 |
(1) | (2) | (3) | |
---|---|---|---|
Eastern Region | Central Region | Western Region | |
1.6365 *** | 0.9483 *** | 0.3897 | |
(5.4042) | (3.0052) | (1.0557) | |
0.1855 | 0.0330 | 0.0587 | |
(1.5284) | (0.3179) | (0.6051) | |
0.2555 *** | 0.3663 *** | 0.4053 *** | |
(4.1380) | (4.6102) | (4.5466) | |
0.1573 *** | 0.1542 *** | 0.2130 *** | |
(3.5028) | (2.8417) | (3.1969) | |
−0.0118 | −0.1311 | −0.0075 | |
(−0.2270) | (−1.3708) | (−0.0667) | |
1.7770 *** | 1.9547 *** | 0.6454 | |
(2.7238) | (2.9582) | (0.7373) | |
1133 | 902 | 1045 | |
0.3447 | 0.2931 | 0.2016 | |
year | Yes | Yes | Yes |
province | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhu, C.; Yang, Y. Does Urban Digital Construction Promote Economic Growth? Evidence from China. Economies 2024, 12, 59. https://doi.org/10.3390/economies12030059
Yang W, Zhu C, Yang Y. Does Urban Digital Construction Promote Economic Growth? Evidence from China. Economies. 2024; 12(3):59. https://doi.org/10.3390/economies12030059
Chicago/Turabian StyleYang, Weixin, Chen Zhu, and Yunpeng Yang. 2024. "Does Urban Digital Construction Promote Economic Growth? Evidence from China" Economies 12, no. 3: 59. https://doi.org/10.3390/economies12030059
APA StyleYang, W., Zhu, C., & Yang, Y. (2024). Does Urban Digital Construction Promote Economic Growth? Evidence from China. Economies, 12(3), 59. https://doi.org/10.3390/economies12030059