Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics
Abstract
:1. Introduction
1.1. Scientific Reasoning
- Formulating scientific questions;
- Generating hypotheses;
- Planning scientific investigations;
- Interpreting data, which are differentiated via different aspects of competence, e.g., [35].
1.2. Literature Summary on Student Difficulties in the Experimental Problem Solving Process
1.2.1. Formulating/Search Hypothesis
1.2.2. Design and Execution of the Experiment
1.2.3. Evaluation of the Evidence
1.3. Relevance of Diagnostic Competencies for (Pre-Service) Teachers
1.4. Self-Efficacy Expectations
1.5. Claim and Research Questions
- …and their pedagogical content knowledge about difficulties of students in experimentation?
- …and their (methodological) content knowledge about central components and decisions in scientific experimentation.
2. Materials and Methods
2.1. Procedure
2.2. Participants
2.3. Instruments
2.3.1. Student Difficulties/Misconceptions and Actions in Experimentation
2.3.2. Relevance of Diagnostics in the Teacher Training Program
2.3.3. Domain-Specific Self-Efficacy Expectations
2.4. Data Analysis
2.4.1. Qualitative Analysis Methods
2.4.2. Quantitative Methods of Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Item Wording | M (SD) | rit |
---|---|---|
A teacher can correctly assess students’ performance in experimentation even without diagnostic components in teacher education. | 2.92 (0.57) | 0.55 |
It is important for teachers to be able to correctly assess the characteristics of the students that are relevant to learning and performance in experimentation. | 3.42 (0.54) | 0.51 |
Diagnostic skills of pre-service teachers in the assessment of experimental processes should be mandatorily promoted in teacher education. | 3.30 (0.58) | 0.59 |
Even without conducting diagnostic units in the course of study, a teacher can correctly assess the characteristics of students that are relevant to learning and performance in experimentation. | 2.88 (0.52) | 0.28 |
Mscale= 3.13; SDscale = 0.39; Cronbach’s α = 0.70 |
Appendix B
Item Wording | Factor Loading (ajq) | h2 | |
---|---|---|---|
I | II | ||
Experiment-related diagnostic activities | |||
Even when I am under stress, I am still able to diagnose students’ errors when experimenting in biology lessons. | 0.818 | 0.697 | |
I am confident in recognising children’s specific difficulties in experimentation in biology despite great time pressure. * | 0.763 | 0.663 | |
In biology, I am able to identify the learning requirements of my students, even when I have little time. * | 0.762 | 0.583 | |
In biology, I am able to confidently understand my students’ experimental skills, even when I have little time. | 0.650 | 0.341 | 0.539 |
n = 97; Mscale = 2.60; SDscale = 0.44; Cronbach’s α = 0.79 | |||
General diagnostic activities | |||
In biology, I am able to integrate a diagnostic activity that accompanies learning in my teaching, even when I am under time pressure. * | 0.549 | 0.418 | 0.476 |
Despite a high degree of heterogeneity, I am able to formulate tasks in biology with which I can appropriately test the level of knowledge of both weaker and stronger students. * | 0.763 | 0.603 | |
In biology, I am able to take into account the learning processes of the students when formulating individual learning objectives, even if these are very different. * | 0.732 | 0.554 | |
In the subject of biology, I manage to grasp the thought and work processes for gaining knowledge of my students, even when I have little time. * | 0.319 | 0.710 | 0.606 |
n = 95; Mscale = 2.46; SDscale = 0.44; Cronbach’s α = 0.70 | |||
% of variance | 46.03 | 12.99 |
References
- Vorholzer, A.; von Aufschnaiter, C.; Boone, W.J. Fostering Upper Secondary Students’ Ability to Engage in Practices of Scientific Investigation: A Comparative Analysis of an Explicit and an Implicit Instructional Approach. Res. Sci. Educ. 2020, 50, 333–359. [Google Scholar] [CrossRef]
- NSTA/ASTE Standards for Science Teacher Preparation. 2020. Available online: https://static.nsta.org/pdfs/2020NSTAStandards.pdf (accessed on 2 August 2021).
- Department for Education. Teachers’ Standards. Guidance for School Leaders, School Staff and Governing Bodies. 2011. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/665520/Teachers__Standards.pdf (accessed on 2 August 2021).
- Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004. Available online: https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Biologie.pdf (accessed on 2 August 2021).
- Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004. Available online: https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Chemie.pdf (accessed on 2 August 2021).
- Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. Beschluss vom 16.12.2004. Available online: https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Physik-Mittleren-SA.pdf (accessed on 2 August 2021).
- Wellnitz, N.; Hecht, M.; Heitmann, P.; Kauertz, A.; Mayer, J.; Sumfleth, E.; Walpuski, M. Modellierung des Kompetenzteilbereichs Naturwissenschaftliche Untersuchungen. Z. Erzieh. 2017, 20, 556–584. [Google Scholar] [CrossRef]
- Darling-Hammond, L. Teacher Quality and Student Achievement. Educ. Policy Anal. Arch. 2000, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Morrell, P.D.; Park Rogers, M.A.; Pyle, E.J.; Roehrig, G.; Veal, W.R. Preparing Teachers of Science for 2020 and Beyond: Highlighting Changes to the NSTA/ASTE Standards for Science Teacher Preparation. J. Sci. Teach. Educ. 2020, 31, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Committee on the Development of an Addendum to the National Science Education Standards on Scientific Inquiry; Board on Science Education; Division of Behavioral and Social Sciences and Education; National Research Council. Inquiry and the National Science Education Standards: A Guide for Teaching and Learning; Olson, S., Loucks-Horsley, S., Eds.; National Academies Press: Washington, DC, USA, 2000; p. 9596. ISBN 9780309064767. [Google Scholar]
- Kultusministerkonferenz. Ländergemeinsame Inhaltliche Anforderungen für die Fachwissenschaften und Fachdidaktiken in der Lehrerbildung. Beschluss der Kultusministerkonferenz vom 16.10.2008 i. d. F. vom 16.05.2019. Available online: https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2008/2008_10_16-Fachprofile-Lehrerbildung.pdf (accessed on 2 August 2021).
- Bruckermann, T.; Aschermann, E.; Bresges, A.; Schlüter, K. Metacognitive and Multimedia Support of Experiments in Inquiry Learning for Science Teacher Preparation. Int. J. Sci. Educ. 2017, 39, 701–722. [Google Scholar] [CrossRef]
- Hodson, D. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods. Int. J. Sci. Educ. 2014, 36, 2534–2553. [Google Scholar] [CrossRef]
- Hartmann, S.; Upmeier zu Belzen, A.; Krüger, D.; Pant, H.A. Scientific Reasoning in Higher Education: Constructing and Evaluating the Criterion-Related Validity of an Assessment of Preservice Science Teachers’ Competencies. Z. Psychol. 2015, 223, 47–53. [Google Scholar] [CrossRef]
- Mathesius, S.; Hartmann, S.; Upmeier zu Belzen, A.; Krüger, D. Scientific Reasoning as an Aspect of Preservice Biology Teacher Education. Assessing competencies using a paper-pencil test. In The Future of Biology Education Research; Tal, T., Yarden, A., Eds.; The Technion, Israel Institute of Technology/The Weizmann Institute of Science: Haifa, Israel, 2016; pp. 93–110. [Google Scholar]
- Bernholt, S.; Neumann, K.; Nentwig, P. Making It Tangible: Learning Outcomes in Science Education; Waxmann: Münster, Germany, 2012; pp. 13–28. [Google Scholar]
- Opitz, A.; Heene, M.; Fischer, F. Measuring Scientific Reasoning-A Review of Test Instruments. Educ. Res. Eval. 2017, 23, 78–101. [Google Scholar] [CrossRef]
- Koslowski, B. Theory and Evidence: The Development of Scientific Reasoning; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Zimmerman, C. The Development of Scientific Reasoning Skills. Dev. Rev. 2000, 20, 99–149. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Elder, L. The Thinker’s Guide to Scientific Thinking: Based on Critical Thinking Concepts & Principles; Thinker’s Guide Library: Tomales, CA, USA, 2012. [Google Scholar]
- Kuhn, D.; Amsel, E.; O’Loughlin, M. The Development of Scientific Thinking Skills. In Developmental Psychology Series; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- Klahr, D. Exploring Science. In The Cognition and Development of Discovery Processes; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Schafersman, S.D. An Introduction to Science: Scientific Thinking and the Scientific Method. Available online: http://www.geo.sunysb.edu/esp/files/scientific-method.html (accessed on 3 August 2021).
- Janoušková, S.; Pyskatá Rathouská, L.; Žák, V.; Urválková, E.S. The Scientific Thinking and Reasoning Framework and Its Applicability to Manufacturing and Services Firms in Natural Sciences. Res. Sci. Technol. Educ. 2021, 1–22. [Google Scholar] [CrossRef]
- Dowd, J.E.; Thompson, R.J.; Schiff, L.A.; Reynolds, J.A. Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers. Life Sci. Educ. 2018, 17, ar4. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, D. The Skills of Argument; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Fischer, F.; Kollar, I.; Ufer, S.; Sodian, B.; Hussmann, H.; Pekrun, R.; Neuhaus, B.; Dorner, B.; Pankofer, S.; Fischer, M.; et al. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education. Frontline Learn. Res. 2014, 2, 28–45. [Google Scholar] [CrossRef]
- Dunbar, K.; Fugelsang, J. Scientific Thinking and Reasoning. In The Cambridge Handbook of Thinking and Reasoning; Holyoak, K.J., Morrison, R.G., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 705–725. [Google Scholar]
- Krell, M.; Redman, C.; Mathesius, S.; Krüger, D.; van Driel, J. Assessing Pre-Service Science Teachers’ Scientific Reasoning Competencies. Res. Sci. Educ. 2018, 50, 2305–2329. [Google Scholar] [CrossRef]
- Lawson, A.E. The Nature and Development of Scientific Reasoning: A Synthetic View. Int. J. Sci. Math. Educ. 2004, 2, 307–338. [Google Scholar] [CrossRef]
- Morris, B.J.; Croker, S.; Masnick, A.; Zimmerm, C. The Emergence of Scientific Reasoning. In Current Topics in Children’s Learning and Cognition; Kloos, H., Ed.; IntechOpen: London, UK, 2012; pp. 61–82. [Google Scholar]
- Kind, P.; Osborne, J. Styles of Scientific Reasoning: A Cultural Rationale for Science Education? Sci. Ed. 2017, 101, 8–31. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.C.; Mühling, A.; Kremer, K. Exploring Core Ideas of Procedural Understanding in Scientific Inquiry Using Educational Data Mining. Res. Sci. Technol. Educ. 2021, 1–21. [Google Scholar] [CrossRef]
- Mayer, J. Erkenntnisgewinnung als Wissenschaftliches Problemlösen. In Theorien in der Biologiedidaktischen Forschung: Ein Handbuch für Lehramtsstudenten und Doktoranden; Krüger, D., Vogt, H., Eds.; Springer: Berlin, Germany; New York, NY, USA, 2007; pp. 177–186. [Google Scholar]
- Baur, A.; Emden, M. How to Open Inquiry Teaching? An Alternative Teaching Scaffold to Foster Students’ Inquiry Skills. Chem. Teach. Int. 2021, 3, 20190013. [Google Scholar] [CrossRef] [Green Version]
- Rieß, W.; Wirtz, M.A.; Barzel, B.; Schulz, A. Integration der theoretischen und empirischen Befunde zum Experimentieren im mathematisch-naturwissenschaftlichen Unterricht. In Experimentieren im Mathematisch-Naturwissenschaftlichen Unterricht: Schüler; Waxmann Verlag: Münster, Germany, 2012; pp. 353–364. [Google Scholar]
- Andersen, C.; Garcia-Mila, M. Scientific Reasoning During Inquiry. In Science Education; Taber, K.S., Akpan, B., Eds.; SensePublishers: Rotterdam, The Netherlands, 2017; pp. 105–117. [Google Scholar]
- Arnold, J.C.; Boone, W.J.; Kremer, K.; Mayer, J. Assessment of Competencies in Scientific Inquiry through the Application of Rasch Measurement Techniques. Educ. Sci. 2018, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Meier, M. Entwicklung und Prüfung eines Instrumentes zur Diagnose der Experimentierkompetenz von Schülerinnen und Schülern; Logos Verlag: Berlin, Germany, 2016. [Google Scholar]
- Hammann, M.; Phan, T.T.H.; Bayrhuber, H. Experimentieren als Problemlösen: Lässt sich das SDDS-Modell Nutzen, um Unterschiedliche Dimensionen beim Experimentieren zu messen? In Kompetenzdiagnostik; Prenzel, M., Gogolin, I., Krüger, H.-H., Eds.; Springer-Verlag GmbH: Wiesbaden, Germany, 2007; pp. 33–50. [Google Scholar]
- Nowak, K.H.; Nehring, A.; Tiemann, R.; Upmeier zu Belzen, A. Assessing Students’ Abilities in Processes of Scientific Inquiry in Biology Using a Paper-and-Pencil Test. J. Biol. Educ. 2013, 47, 182–188. [Google Scholar] [CrossRef]
- Nehring, A.; Nowak, K.H.; zu Belzen, A.U.; Tiemann, R. Predicting Students’ Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables. Int. J. Sci. Educ. 2015, 37, 1343–1363. [Google Scholar] [CrossRef]
- Nehring, A.; Stiller, J.; Nowak, K.H.; Upmeier zu Belzen, A.; Tiemann, R. Naturwissenschaftliche Denk- und Arbeitsweisen im Chemieunterricht-eine Modellbasierte Videostudie zu Lerngelegenheiten für den Kompetenzbereich der Erkenntnisgewinnung. ZfDN 2016, 22, 77–96. [Google Scholar] [CrossRef]
- Kraeva, L. Problemlösestrategien von Schülerinnen und Schülern Diagnostizieren; Logos Verlag: Berlin, Germany, 2020. [Google Scholar]
- Neumann, I. Beyond Physics Content Knowledge: Modeling Competence Regarding Nature of Scientific Inquiry and Nature of Scientific Knowledge; Logos Verlag: Berlin, Germany, 2011. [Google Scholar]
- Maiseyenka, V.; Schecker, H.; Nawrath, D. Kompetenzorientierung des Naturwissenschaftlichen Unterrichts-Symbiotische Kooperation bei der Entwicklung eines Modells Experimenteller Kompetenz. PhyDid A Phys. Didakt. Sch. Hochsch. 2013, 1, 1–17. [Google Scholar]
- Nababan, N.P.; Nasution, D.; Jayanti, R.D. The Effect of Scientific Inquiry Learning Model and Scientific Argumentation on The Students’ Science Process Skill. J. Phys. Conf. Ser. 2019, 1155, 012064. [Google Scholar] [CrossRef]
- Hilfert-Rüppell, D.; Eghtessad, A.; Höner, K. Interaktive Videovignetten aus naturwissenschaftlichem Unterricht—Förderung der Diagnosekompetenz von Lehramtsstudierenden hinsichtlich der Experimentierfähigkeit von Schülerinnen und Schülern. Medien Pädagogik 2018, 31, 125–142. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Brooks, P.J.; Aldrich, N.J.; Tenenbaum, H.R. Does Discovery-Based Instruction Enhance Learning? J. Educ. Psychol. 2011, 103, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Abrams, E.; Southerland, S.A.; Evans, C. Inquiry in the Classroom: Identifying Necessary Components of a Useful Definition. In Inquiry in the Science Classroom: Challenges and Opportunities; Abrams, E., Southerland, S., Silva, P., Eds.; Information Age Publishing: Charlotte, NC, USA, 2008; pp. 11–42. [Google Scholar]
- Barzel, B.; Reinhoffer, B.; Schrenk, B. Das Experimentieren im Unterricht. In Experimentieren im Mathematisch-Naturwissenschaftlichen Unterricht: Schüler Lernen Wissenschaftlich Denken und Arbeiten; Rieß, W., Wirtz, M.A., Barzel, B., Schulz, A., Eds.; Waxmann Verlag: Münster, Germany, 2012; pp. 103–128. [Google Scholar]
- Ural, E. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students’ Chemistry Laboratory Attitudes, Anxiety and Achievement. J. Educ. Train. Stud. 2016, 4, 217–227. [Google Scholar] [CrossRef]
- Hmelo-Silver, C.E.; Duncan, R.G.; Chinn, C.A. Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006). Educ. Psychol. 2007, 42, 99–107. [Google Scholar] [CrossRef]
- Vorholzer, A.; von Aufschnaiter, C. Guidance in Inquiry-Based Instruction-An Attempt to Disentangle a Manifold Construct. Int. J. Sci. Educ. 2019, 41, 1562–1577. [Google Scholar] [CrossRef]
- Höner, K.; Eghtessad, A.; Hilfert-Rüppell, D.; Kraeva, L. Naturwissenschaftliches Potenzial?—Diagnose von Schülerfähigkeiten zum experimentellen Problemlösen. J. Für Begabtenförderung 2017, 2, 8–23. [Google Scholar]
- Hammann, M.; Phan, T.T.H.; Ehmer, M.; Grimm, T. Assessing Pupils’ Skills in Experimentation. J. Biol. Exp. 2008, 42, 66–72. [Google Scholar] [CrossRef]
- National Academy of Engineering and National Research Council. STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Bell, R.L.; Blair, L.M.; Crawford, B.A.; Lederman, N.G. Just Do It? Impact of a Science Apprenticeship Program on High School Students’ Understandings of the Nature of Science and Scientific Inquiry. J. Res. Sci. Teach. 2003, 40, 487–509. [Google Scholar] [CrossRef]
- Klahr, D.; Nigam, M. The Equivalence of Learning Paths in Early Science Instruction: Effect of Direct Instruction and Discovery Learning. Psychol. Sci. 2004, 15, 661–667. [Google Scholar] [CrossRef]
- Kirschner, P.A.; Sweller, J.; Clark, R.E. Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educ. Psychol. 2006, 41, 75–86. [Google Scholar] [CrossRef]
- Dunbar, K.; Klahr, D. Developmental Differences in Scientific Discovery Processes. In Complex Information Processing: The Impact of Herbert, A. Simon; Lawrence Erlbaum Associates, Inc.: New Jersey, NJ, USA, 1989; pp. 109–143. [Google Scholar]
- Chinn, C.A.; Brewer, W.F. The Role of Anomalous Data in Knowledge Acquisition: A Theoretical Framework and Implications for Science Instruction. Rev. Educ. Res. 1993, 63, 1–49. [Google Scholar] [CrossRef]
- Hammann, M.; Phan, T.T.H.; Ehmer, M.; Bayrhuber, H. Fehlerfrei Experimentieren. Math. Nat. Unterr. 2006, 59, 292–299. [Google Scholar]
- Klahr, D.; Fay, A.L.; Dunbar, K. Heuristics for Scientific Experimentation: A Developmental Study. Cogn. Psychol. 1993, 25, 111–146. [Google Scholar] [CrossRef]
- Lubben, F.; Millar, R. Children’s Ideas about the Reliability of Experimental Data. Int. J. Sci. Educ. 1996, 18, 955–968. [Google Scholar] [CrossRef]
- Baur, A. Fehler, Fehlkonzepte und Spezifische Vorgehensweisen von Schülerinnen und Schülern beim Experimentieren: Ergebnisse einer Videogestützten Beobachtung. ZfDN 2018, 24, 115–129. [Google Scholar] [CrossRef]
- Hilfert-Rüppell, D.; Höner, K. Diagnosing Student’s Scientific Reasoning Skills Based on Authentic Videos of Inquiry Experiments (Working Title); TU Braunschweig: Braunschweig, Germany, 2021. [Google Scholar]
- Glaser, R.; Schauble, L.; Raghavan, K.; Zeitz, C. Scientific Reasoning Across Different Domains. In Computer-Based Learning Environments and Problem Solving; De Corte, E., Linn, M.C., Mandl, H., Verschaffel, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–371. [Google Scholar]
- Germann, P.J.; Aram, R.; Burke, G. Identifying Patterns and Relationships among the Responses of Seventh-Grade Students to the Science Process Skill of Designing Experiments. J. Res. Sci. Teach. 1996, 33, 79–99. [Google Scholar] [CrossRef]
- Chen, Z.; Klahr, D. All Other Things Being Equal: Acquisition and Transfer of the Control of Variables Strategy. Child Dev. 1999, 70, 1098–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchner, S.; Priemer, B. Probleme von Schülern Mit Offenen Experimentieraufgaben in Physik. In Naturwissenschaftlicher Unterricht im internationalen Vergleich; LIT Verlag: Münster, Germany, 2007; pp. 346–348. [Google Scholar]
- Wahser, I.; Sumfleth, E. Training Experimenteller Arbeitsweisen Zur Unterstützung Kooperativer Kleingruppenarbeit Im Fach Chemie. ZfDN 2008, 14, 219–241. [Google Scholar]
- Meier, M.; Mayer, J. Experimentierkompetenz praktisch erfassen—Entwicklung und Validierung eines anwendungsbezogenen Aufgabendesigns. In Lehr- und Lernforschung in der Biologiedidaktik; Harms, U., Bogner, F.X., Eds.; StudienVerlag: Innsbruck, Austria, 2012; Volume 5, pp. 81–98. [Google Scholar]
- Meier, M.; Mayer, J. Selbständiges Experimentieren: Entwicklung und Einsatz eines anwendungsbezogenen Aufgabendesigns. MNU 2014, 67, 4–10. [Google Scholar]
- Kechel, J.-H.; Wodzinski, R. Schülerschwierigkeiten beim Experimentieren zum Hooke’schen Gesetz. In Authentizität und Lernen-das Fach in der Fachdidaktik; Universität Regensburg: Regensburg, Germany, 2016; pp. 170–172. [Google Scholar]
- Nerdel, C. Kompetenzorientiert und aufgabenbasiert für Schule und Hochschule. In Grundlagen der Naturwissenschaftsdidaktik, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Carey, S.; Evans, R.; Honda, M.; Jay, E.; Unger, C. ‘An Experiment Is When You Try It and See If It Works’: A Study of Grade 7 Students’ Understanding of the Construction of Scientific Knowledge. Int. J. Sci. Educ. 1989, 11, 514–529. [Google Scholar] [CrossRef]
- Schauble, L.; Klopfer, L.E.; Raghavan, K. Students’ Transition from an Engineering Model to a Science Model of Experimentation. J. Res. Sci. Teach. 1991, 28, 859–882. [Google Scholar] [CrossRef]
- Chinn, C.A.; Brewer, W.F. An Empirical Test of a Taxonomy of Responses to Anomalous Data in Science. J. Res. Sci. Teach. 1998, 35, 623–654. [Google Scholar] [CrossRef]
- Ludwig, T.; Priemer, B. Begründungen und Überzeugungen beim Beibehalten und Verwerfen von eigenen Hypothesen in Real-und Simulationsexperimenten. In Konzepte Fachdidaktischer Strukturierung für den Unterricht; Bernholt, S., Ed.; LIT Verlag: Münster, Germany, 2012; pp. 313–315. [Google Scholar]
- De Jong, T.; Van Joolingen, W.R. Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Rev. Educ. Res. 1998, 68, 179–201. [Google Scholar] [CrossRef]
- Arnold, J.; Kremer, K.; Mayer, J. Understandig Students´Experiments—What Kind of Support Do They Need in Inquiry Tasks? Int. J. Sci. Educ. 2014, 36, 2719–2749. [Google Scholar] [CrossRef]
- Arnold, J.; Kremer, K.; Mayer, J. Schüler als Forscher. Experimentieren kompetenzorientiert Unterrichten und Beurteilen. MNU 2014, 67, 83–91. [Google Scholar]
- Hammann, M. Kompetenzentwicklungsmodelle: Merkmale und ihre Bedeutung - dargestellt anhand von Kompetenzen beim Experimentieren. MNU 2004, 57, 196–203. [Google Scholar]
- Dunbar, K. Concept Discovery in a Scientific Domain. Cogn. Sci. 1993, 17, 397–434. [Google Scholar] [CrossRef] [Green Version]
- Härtig, H.; Neumann, K.; Erb, R. Experimentieren als Interaktion von Situation und Person: Ergebnisse einer Expertenbefragung. ZfDN 2017, 23, 71–80. [Google Scholar] [CrossRef]
- Cappell, J. Fachspezifische Diagnosekompetenz Angehender Physiklehrkräfte in der Ersten Ausbildungsphase; Studien zum Physik-und Chemielernen; Logos Verlag: Berlin, Germany, 2013. [Google Scholar]
- Bögeholz, S.; Joachim, C.; Hasse, S.; Hammann, M. Kompetenzen von (angehenden) Biologielehrkräften Zur Beurteilung von Experimentierkompetenzen. Unterrichtswissenschaft 2016, 44, 40–54. [Google Scholar]
- Draude, M. Die Kompetenz von Physiklehrkräften, Schwierigkeiten von Schülerinnen und Schülern beim Eigenständigen Experimentieren zu Diagnostizieren; Logos Verlag Berlin: Berlin, Germany, 2016. [Google Scholar]
- Kechel, J.-H. Schülerschwierigkeiten beim Eigenständigen Experimentieren: Eine Qualitative Studie am Beispiel einer Experimentieraufgabe zum Hooke’schen Gesetz; Logos Verlag Berlin: Berlin, Germany, 2016. [Google Scholar]
- Dübbelde, G. Diagnostische Kompetenzen Angehender Biologie-Lehrkräfte im Bereich der Naturwissenschaftlichen Erkenntnisgewinnung; Universität Kassel: Kassel, Germany, 2013; Available online: https://kobra.uni-kassel.de/handle/123456789/2013122044701 (accessed on 3 August 2021).
- Beretz, A.-K.; Lengnink, K.; Aufschnaiter, C. Diagnostische Kompetenz gezielt Fördern-Videoeinsatz im Lehramtsstudium Mathematik und Physik. In Diagnose und Förderung Heterogener Lerngruppen: Theorien, Konzepte und Beispiele aus der MINT-Lehrerbildung; Selter, C., Michaelis, J., Lengnink, K., Knipping, C., Hößle, C., Hußmann, S., Eds.; Waxmann: Münster, Germany; New York, NY, USA, 2017; pp. 149–168. [Google Scholar]
- Schrader, J. Theorie und Praxis der Erwachsenenbildung. In Struktur und Wandel der Weiterbildung; Bertelsmann: Bielefeld, Germany, 2011. [Google Scholar]
- Chernikova, O.; Heitzmann, N.; Fink, M.C.; Timothy, V.; Seidel, T.; Fischer, F. Facilitating Diagnostic Competences in Higher Education-A Meta-Analysis in Medical and Teacher Education. Educ. Psychol. Rev. 2020, 32, 157–196. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Förtsch, C.; Boone, W.J.; Seidel, T.; Neuhaus, B.J. Investigating Pre-Service Biology Teachers’ Diagnostic Competences: Relationships between Professional Knowledge, Diagnostic Activities, and Diagnostic Accuracy. Educ. Sci. 2021, 11, 89. [Google Scholar] [CrossRef]
- Shulman, L.S. Knowledge and Teaching. Foundations of the New Reform. Harv. Educ. Rev. 1987, 57, 1–22. [Google Scholar] [CrossRef]
- Kunter, M.; Klusmann, U.; Baumert, J. Professionelle Kompetenz von Mathematiklehrkräften: Das COACTIV-Modell. In Lehrprofessionalität. Bedingungen, Genese, Wirkungen und ihre Messung; Zlatkin-Troitschanskaia, O., Beck, K., Sembill, D., Nickolaus, R., Mulder, R., Eds.; Beltz: Weinheim, Germany, 2009; pp. 153–165. [Google Scholar]
- Barth, V.L.; Piwowar, V.; Kumschick, I.R.; Ophardt, D.; Thiel, F. The Impact of Direct Instruction in a Problem-Based Learning Setting. Effects of a Video-Based Training Program to Foster Preservice Teachers’ Professional Vision of Critical Incidents in the Classroom. Int. J. Educ. Res. 2019, 95, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.; Förtsch, C.; Stürmer, J.; Förtsch, S.; Seidel, T.; Neuhaus, B.J. Measuring Biology Teachers’ Professional Vision: Development and Validation of a Video-Based Assessment Tool. Cogent. Educ. 2020, 7, 1823155. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Neuhaus, B.J. Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts? Educ. Sci. 2021, 11, 244. [Google Scholar] [CrossRef]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond Dichotomies: Competence Viewed as a Continuum. Z. Psychol. 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Seidel, T.; Stürmer, K. Modeling and Measuring the Structure of Professional Vision in Preservice Teachers. Am. Educ. Res. J. 2014, 51, 739–771. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, G.; Sherin, M.G.; Renkl, A.; Glogger, I.; Seidel, T. Understanding Video as a Tool for Teacher Education: Investigating Instructional Strategies to Promote Reflection. Instr. Sci. 2014, 42, 443–463. [Google Scholar] [CrossRef]
- Meissel, K.; Meyer, F.; Yao, E.S.; Rubie-Davies, C.M. Subjectivity of Teacher Judgments: Exploring Student Characteristics That Influence Teacher Judgments of Student Ability. Teach. Teach. Educ. 2017, 65, 48–60. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M. Das Kompetenzmodell von COACTIV. In Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Waxmann: Münster, Germany, 2011; pp. 29–53. [Google Scholar]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Bong, M.; Skaalvik, E.M. Academic Self-Concept and Self-Efficacy: How Different Are They Really? Educ. Psychol. Rev. 2003, 15, 1–40. [Google Scholar] [CrossRef]
- Bandura, A.; Freeman, W.H.; Lightsey, R. Self-Efficacy: The Exercise of Control. J. Cogn. Psychother. 1999, 13, 158–166. [Google Scholar] [CrossRef]
- Bandura, A. Guide for Constructing Self-Efficacy Scales. In Self-Efficacy Beliefs of Adolescents; Pajares, F., Urdan, T., Eds.; Information Age Publishing: Charlotte, NC, USA, 2006; Volume 5, pp. 307–337. [Google Scholar]
- Pajares, F. Self-Efficacy Beliefs in Academic Settings. Rev. Educ. Res. 1996, 66, 543–578. [Google Scholar] [CrossRef]
- Andrew, S. Self-Efficacy as a Predictor of Academic Performance in Science. J. Adv. Nurs. 1998, 27, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Schunk, D.H.; Pajares, F. Self-Efficacy Theory. In Handbook of Motivation at School; Wenzel, K.R., Wigfield, A., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA, 2009; pp. 35–53. [Google Scholar]
- Komarraju, M.; Nadler, D. Self-Efficacy and Academic Achievement: Why Do Implicit Beliefs, Goals, and Effort Regulation Matter? Learn. Individ. Differ. 2013, 25, 67–72. [Google Scholar] [CrossRef]
- Handtke, K.; Bögeholz, S. Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) Instrument: Drafting a Theory-Based Measurement. Educ. Sci. 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Hackett, G.; Betz, N.E. An Exploration of the Mathematics Self-Efficacy/Mathematics Performance Correspondence. J. Res. Math. Educ. 1989, 20, 261–273. [Google Scholar] [CrossRef]
- Pajares, F.; Kranzler, J. Self-Efficacy Beliefs and General Mental Ability in Mathematical Problem-Solving. Contemp. Educ. Psychol. 1995, 20, 426–443. [Google Scholar] [CrossRef]
- Pajares, F.; Graham, L. Self-Efficacy, Motivation Constructs, and Mathematics Performance of Entering Middle School Students. Contemp. Educ. Psychol. 1999, 24, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Fencl, H.; Scheel, K. Engaging Students: An Examination of the Effects of Teaching Strategies on Self-Efficacy and Course Climate in a Nonmajors Physics Course. J. Coll. Sci. Teach. 2005, 35, 20. [Google Scholar]
- Dalgety, J.; Coll, R.K. Exploring First-Year Science Students’ Chemistry Self-Efficacy. Int. J. Sci. Math. Educ. 2006, 4, 97–116. [Google Scholar] [CrossRef]
- Yürük, N. The Predicators of Pre-Service Elementary Teachers´Anxiety about Teaching Science. J. Balt. Sci. Educ. 2011, 10, 17–26. [Google Scholar]
- Kurbanoglu, N.I.; Akim, A. The Relationships between University Students’ Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs. Aust. J. Teach. Educ. 2010, 35, 48–59. [Google Scholar] [CrossRef]
- Trujillo, G.; Tanner, K.D. Considering the Role of Affect in Learning: Monitoring Students’ Self-Efficacy, Sense of Belonging, and Science Identity. Life Sci. Educ. 2014, 13, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riese, J.; Reinhold, P. Empirische Erkenntnisse zur Struktur Professioneller Handlungskompetenz von angehenden Physiklehrkräften. ZfDN 2010, 16, 167–187. [Google Scholar]
- Mahler, D.; Großschedl, J.; Harms, U. Opportunities to Learn for Teachers’ Self-Efficacy and Enthusiasm. Educ. Res. Int. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Klug, J.; Bruder, S.; Schmitz, B. Which Variables Predict Teachers Diagnostic Competence When Diagnosing Students’ Learning Behavior at Different Stages of a Teacher’s Career? Teach. Teach. 2016, 22, 461–484. [Google Scholar] [CrossRef]
- Holzberger, D.; Philipp, A.; Kunter, M. How Teachers’ Self-Efficacy Is Related to Instructional Quality: A Longitudinal Analysis. J. Educ. Psychol. 2013, 105, 774–786. [Google Scholar] [CrossRef]
- Blömeke, S. Qualitativ-Quantitativ, Induktiv-Deduktiv, Prozess-Produkt, National-International. In Forschung zur Lehrerbildung; Lüders, M., Ed.; Waxmann Verlag: Münster, Germany, 2007; pp. 13–36. [Google Scholar]
- Barke, H.-D.; Hazari, A.; Yitbarek, S. Misconceptions in Chemistry: Addressing Perceptions in Chemical Education; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Tolsdorf, Y.; Markic, S. Exploring Chemistry Student Teachers’ Diagnostic Competence-A Qualitative Cross-Level Study. Educ. Sci. 2017, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Tolsdorf, Y.; Markic, S. Development of an Instrument and Evaluation Pattern for the Analysis of Chemistry Student Teachers’ Diagnostic Competence. Int. J. Physc. Chem. Educ. 2017, 9, 1–10. [Google Scholar]
- Capizzi, A.M.; Fuchs, L.S. Effects of Curriculum-Based Measurement with and without Diagnostic Feedback on Teacher Planning. Remedial Spec. Educ. 2005, 26, 159–174. [Google Scholar] [CrossRef]
- Cramer, C. Beurteilung Des Bildungswissenschaftlichen Studiums Durch Lehramtsstudierende in Der Ersten Ausbildungsphase Im Längsschnitt. Z. Pädagogik 2013, 59, 66–82. [Google Scholar]
- Bicak, B.E.; Borchert, C.E.; Höner, K. Measuring and Fostering Preservice Chemistry Teachers’ Scientific Reasoning Competency. Educ. Sci. 2021, 11, 496. [Google Scholar] [CrossRef]
- Osborne, J. The 21st Century Challenge for Science Education: Assessing Scientific Reasoning. Think. Ski. Creat. 2013, 10, 265–279. [Google Scholar] [CrossRef]
- Shavelson, R.J. Assessing Business-Planning Competence using the Collegiate Learning Assessment as a Prototype. Empir. Res. Vocat. Educ. Train. 2012, 4, 77–90. [Google Scholar] [CrossRef]
- Roberts, R.; Gott, R.; Glaesser, J. Students’ approaches to open-ended science investigation: The importance of substantive and procedural understanding. Res. Pap. Educ. 2010, 25, 377–407. [Google Scholar] [CrossRef]
- Mathesius, S.; Upmeier zu Belzen, A.; Krüger, D. Eyetracking als Methode zur Untersuchung von Lösungsprozessen bei Multiple-Choice-Aufgaben zum wissenschaftlichen Denken. In Lehr- und Lernforschung in der Biologiedidaktik; Hammann, M., Lindner, M., Eds.; Studienverlag: Innsbruck, Germany, 2018; pp. 225–244. [Google Scholar]
- Osbeck, L.M. Scientific Reasoning as Sense-Making: Implications for Qualitative Inquiry. Qual. Psychol. 2014, 1, 34–46. [Google Scholar] [CrossRef]
- Lorenz, C. Schriften aus der Fakultät Humanwissenschaften der Otto-Friedrich-Universität Bamberg. In Diagnostische Kompetenz von Grundschullehrkräften: Strukturelle Aspekte und Bedingungen; University of Bamberg Press: Bamberg, Germany, 2011. [Google Scholar]
- Cronbach, L.J.; Meehl, P.E. Construct Validity in Psychological Tests. Psychol. Bull. 1955, 52, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, R.; Jerusalem, M. Das Konzept Der Selbstwirksamkeit. In Selbstwirksamkeit und Motivationsprozesse in Bildungsinstitutionen; Jerusalem, M., Hopf, D., Eds.; Beltz Verlag: Weinheim, Germany; Basel, Switzerland, 2002; pp. 28–53. [Google Scholar]
- Sprenger, M.; Wartha, S.; Lipowsky, F. Skalenhandbuch der Fortbildungsstudie QUASUM-Wirkungen einer Qualifizierungsmaßnahme zum Thema Rechenstörungen auf das Diagnostische Wissen und die Selbstwirksamkeitserwartungen von Mathematiklehrpersonen; Pädagogische Hochschule Karlsruhe: Karlsruhe, Germany, 2015; Unpublished work. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse: Grundlagen und Techniken; Beltz: Weinheim, Germany; Basel, Switzerland, 2015. [Google Scholar]
- Stamann, C.; Janssen, M.; Schreier, M. Qualitative Inhaltsanalyse-Versuch einer Begriffsbestimmung und Systematisierung. Forum Qual. Soc. Res. 2016, 17, 16. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, K. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2017, 48, 1273–1296. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrance Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Fensham, P. Science for All. Educ. Leadersh. 1986, 44, 18–23. [Google Scholar]
- Next Generation Science Standards (NGSS). Topic Arrangements of the Next Generation Science Standards. Available online: https://www.nextgenscience.org/sites/default/files/AllTopic.pdf (accessed on 4 August 2021).
- Hessisches Kultusministerium. Kerncurriculum Gymnasiale Oberstufe. Biologie. Available online: https://kultusministerium.hessen.de/sites/default/files/media/kcgo-bio.pdf (accessed on 5 August 2021).
- Hessisches Kultusministerium. Kerncurriculum Gymnasiale Oberstufe. Chemie. Available online: https://kultusministerium.hessen.de/sites/default/files/media/kcgo-ch.pdf (accessed on 5 August 2021).
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium-Gymnasiale Oberstufe, die Gesamtschule-Gymnasiale Oberstufe, das Berufliche Gymnasium das Abendgymnasium, das Kolleg. Biologie. Available online: https://cuvo.nibis.de/cuvo.php?p=search&k0_0=Dokumentenart&v0_0=Kerncurriculum&k0_1=Schulbereich&v0_1=Sek+II&k0_2=Fach&v0_2=Biologie& (accessed on 5 August 2021).
- Niedersächsisches Kultusministerium. Kerncurriculum für das Gymnasium-Gymnasiale Oberstufe, die Gesamtschule-Gymnasiale Oberstufe, das Berufliche Gymnasium das Abendgymnasium, das Kolleg. Chemie. Available online: https://cuvo.nibis.de/cuvo.php?p=search&k0_0=Dokumentenart&v0_0=Kerncurriculum&k0_1=Schulbereich&v0_1=Sek+II&k0_2=Fach&v0_2=Chemie& (accessed on 5 August 2021).
- Ziepprecht, K.; Meier, M. Umsetzung und Weiterentwicklung von Modellen zur curricularen Vernetzung in hochschuldidaktischen Lernumgebungen in PRONET und PRONET2. In Vielfältige Wege biologiedidaktischer Forschung. Vom Lernort Natur zur Naturwissenschaftlichen Erkenntnisgewinnung in die Lehrerprofessionalisierung; Meier, M., Wulff, C., Ziepprecht, K., Eds.; Waxmann: Münster, Germany, 2021; pp. 203–218. [Google Scholar]
- Becerra-Labra, C.; Gras-Martí, A.; Martinez Torregrosa, J. Teaching Physics with a Fundamental-Problem-Based Approach: Effects on Conceptual Learning, Attitudes and Interests of University Students. Rev. Bras. Ensino Fis. 2006, 29, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Krüger, D.; Hartmann, S.; Nordmeier, V.; Upmeier zu Belzen, A. Measuring Scientific Reasoning Competencies: Multiple Aspects of Validity. In Student Learning in German Higher Education; Zlatkin-Troitschanskaia, O., Pant, H.A., Toepper, M., Lautenbach, C., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; pp. 261–280. [Google Scholar]
- Krell, M.; Mathesius, S.; van Driel, J.; Vergara, C.; Krüger, D. Assessing Scientific Reasoning Competencies of Pre-Service Science Teachers: Translating a German Multiple-Choice Instrument into English and Spanish. Int. J. Sci. Educ. 2020, 42, 2819–2841. [Google Scholar] [CrossRef]
- Mahler, D.; Bock, D.; Bruckermann, T. Preservice Biology Teachers Scientific Reasoning Skills and Beliefs about Nature of Science: How do They Develop and is There a Mutual Relationship during the Development? Educ. Sci. 2021, 9, 558. [Google Scholar] [CrossRef]
- Kersting, N. Using Video Clips of Mathematics Classroom Instruction as Item Prompts to Measure Teachers’ Knowledge of Teaching Mathematics. Educ. Psychol. Meas. 2008, 68, 845–861. [Google Scholar] [CrossRef]
- Kunz, H.; Wolowski, J. Wissenschaftliches Denken und Arbeiten im Kompetenzorientierten Biologieunterricht-Aufbau von Fachmethodischem Wissen in der Qualifizierung Angehender Lehrkräfte. In Vielfältige Wege biologiedidaktischer Forschung. Vom Lernort Natur zur Naturwissenschaftlichen Erkenntnisgewinnung in die Lehrerprofessionalisierung; Meier, M., Wulff, C., Ziepprecht, K., Eds.; Waxmann: Münster, Germany, 2021; pp. 189–202. [Google Scholar]
- Joachim, C.; Hammann, M.; Carstensen, C.H.; Bögeholz, S. Modeling and Measuring Pre-Service Teachers’ Assessment Literacy Regarding Experimentation Competences in Biology. Educ. Sci. 2020, 10, 140. [Google Scholar] [CrossRef]
- Van der Valk, T.; de Jong, O. Scaffolding Science Teachers in Open-Inquiry Teaching. Int. J. Sci. Educ. 2009, 31, 829–850. [Google Scholar] [CrossRef]
- Hilfert-Rüppell, D.; Looß, M.; Klingenberg, K.; Eghtessad, A.; Höner, K.; Müller, R.; Strahl, A.; Pietzner, V. Scientific Reasoning of Prospective Science Teachers in Designing a Biological Experiment. Lehrbild. Prüfstand 2013, 6, 135–154. [Google Scholar]
- Rauin, U.; Meier, U. Subjektive Einschätzungen des Kompetenzerwerbs in der Lehramtsausbildung. In Forschung zur Lehrerbildung; Lüders, M., Ed.; Waxmann: Münster, Germany, 2007; pp. 102–131. [Google Scholar]
- Pugh, K.J.; Bergin, D.A. Motivational Influences on Transfer. Educ. Psychol. 2006, 41, 147–160. [Google Scholar] [CrossRef]
- Simosi, M. The Moderating Role of Self-Efficacy in the Organizational Culture–Training Transfer Relationship. Int. J. Train. Dev. 2012, 16, 92–106. [Google Scholar] [CrossRef]
- Schütze, B.; Rakoczy, K.; Klieme, E.; Besser, M.; Leiss, D. Training Effects on Teachers’ Feedback Practice. The Mediating Function of Feedback Knowledge and the Moderating Role of Self-Efficacy. ZDM 2017, 49, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Fauth, B.; Decristan, J.; Decker, A.-T.; Büttner, G.; Hardy, I.; Klieme, E.; Kunter, M. The Effects of Teacher Competence on Student Outcomes in Elementary Science Education: The Mediating Role of Teaching Quality. Teach. Teach. Educ. 2019, 86, 102882. [Google Scholar] [CrossRef]
- Khan, S.; Krell, M. Scientific Reasoning Competencies: A Case of Preservice Teacher Education. Can. J. Sci. Math. Techn. Educ. 2019, 19, 446–464. [Google Scholar] [CrossRef] [Green Version]
- Vorholzer, A.; von Aufschnaiter, C.; Kirschner, S. Entwicklung und Erprobung eines Tests zur Erfassung des Verständnisses Experimenteller Denk-und Arbeitsweisen. ZfDN 2016, 22, 25–41. [Google Scholar] [CrossRef]
- Lawson, A.E.; Clark, B.; Cramer-Meldrum, E.; Falconer, K.A.; Sequist, J.M.; Kwon, Y.-J. Development of Scientific Reasoning in College Biology: Do Two Levels of General Hypothesis-Testing Skills Exist? J. Res. Sci. Teach. 2000, 37, 81–101. [Google Scholar] [CrossRef]
- Bosse, S.; Spörer, N. Erfassung der Einstellung und der Selbstwirksamkeit von Lehramtsstudierenden zum inklusiven Unterricht. Empir. Sonderpädagogik 2014, 4, 279–299. [Google Scholar]
- Jerusalem, M.; Satow, L. Schulbezogene Selbstwirksamkeitserwartung. In Skalen zur Erfassung von Lehrer-und Schülermerkmalen; Jerusalem, M., Schwarzer, R., Eds.; Freie Universität Berlin: Berlin, Germany, 1999; p. 15. [Google Scholar]
- Caspary, R.; Blanck, B.; Spychiger, M.; Bosch, B.; Steinbrink, D.; Beutelspacher, A.; Kahl, R.; Osten, M.; Schumacher, R.; Spitzer, M. Der Produktive Umgang mit Fehlern. In Nur wer Fehler Macht, Kommt Weiter. Wege zu einer Neuen Lernkultur; Herder: Freiburg, Germany, 2008; pp. 49–72. [Google Scholar]
- Schlatter, E.; Lazonder, A.W.; Molenaar, I.; Janssen, N. Individual Differences in Children’s Scientific Reasoning. Educ. Sci. 2021, 11, 471. [Google Scholar] [CrossRef]
- Herppich, S.; Praetorius, A.-K.; Förster, N.; Glogger-Frey, I.; Karst, K.; Leutner, D.; Behrmann, L.; Böhmer, M.; Ufer, S.; Klug, J.; et al. Teachers’ Assessment Competence: Integrating Knowledge-, Process-, and Product-Oriented Approaches into a Competence-Oriented Conceptual Model. Teach. Teach. Educ. 2018, 76, 181–193. [Google Scholar] [CrossRef]
- Behrmann, L.; van Ophuysen, S. Das Vier-Komponenten-Modell der Diagnosequalität. In Diagnostische Kompetenz von Lehrkräften: Theoretische und Methodische Weiterentwicklungen; Pädagogische Psychologie und Entwicklungspsychologie; Südkamp, A., Praetorius, A.-K., Eds.; Waxmann: Münster, Germany; New York, NY, USA, 2017; pp. 38–41. [Google Scholar]
- Vogt, F.; Schmiemann, P. Assessing Biology Pre-Service Teachers’ Professional Vision of Teaching Scientific Inquiry. Educ. Sci. 2020, 10, 332. [Google Scholar] [CrossRef]
Phase: | Search Hypothesis | [39,61,62,63,64,65,66,67] | |
No hypothesis is formulated. No alternative hypotheses are formulated. There is no idea about the purpose of hypothesising. Hypotheses are not related to the research question. Hypotheses are formulated and/or changed in the scientific inquiry process. In the hypothesis, the variables are not defined or are defined incorrectly. Hypotheses are formulated without justification (conjectures). Assumptions are justified by themselves. Assumptions are justified with reference to everyday life. | |||
Phase: | Planning and Testing | [39,56,63,66,67,68,69,70,71,72,73,74,75,76] | |
Experiment is not suitable for testing the hypothesis. No plan and/or unstructured trial and error (no plan, change all). Missing and/or incorrect operationalisation of variables. Unsystematic handling of variables, i.e., several variables are confounded with each other or the same variable is varied unsystematically. Planning of an experiment that does not lead to the desired results. Lack of a measurement concept/measurement repetitions. Lack of a control approach and/or attention to control variables. Selection of materials is unsystematic, incomplete and/or done by trial and error. Difficulties in handling (simple) materials (e.g., pipette). Wrong observation focus. Interference factors are perceived but not eliminated. | |||
Phase: | Evaluate Evidence | [63,66,67,72,75,77,78,79,80] | |
Hypothesis is confirmed without considering the results (confirmatory bias). Hypothesis is adjusted to the results. Data are not (re)related to hypothesis. Not all results are considered; (unexpected) results are (partly) ignored. Unexpected results are attributed to errors in the experimental procedure. Missing or incomplete (error) reflection of the results. Wrong conclusion from coherent experiments. Due to unsystematic variable variation, no conclusions can actually be drawn, or illogical conclusions are drawn. |
n | Age in Years | Sex | School Type | Semester in Biology | Semester in Chemistry | |||
---|---|---|---|---|---|---|---|---|
M (SD) | Female | Male | GYM | HR | M (SD) | M (SD) | ||
n (%) | n (%) | |||||||
Total sample | 51 | 22.0 (2.6) | 34 (67) | 17 (33) | 34 (67) | 17 (33) | ||
Sub-sample biology | 30 | 21.9 (2.5) | 22 (73) | 8 (27) | 19 (63) | 11 (37) | 4.7 (1.8) | |
Sub-sample chemistry | 21 | 22.2 (2.8) | 12 (57) | 9 (43) | 15 (71) | 6 (29) | 4.4 (2.1) |
Difficulties Students Face (Deductive, See Table 1) | Paraphrase from Material | h |
---|---|---|
Phase: Search Hypothesis | ||
Phenomenon | ||
Different levels of prior knowledge | Students have sharply divergent understandings (or sometimes no understanding) of how sugar dissolves in tea. | 13 |
Research question | ||
Integrating the research question into the experimentation process | Perhaps a too complicated research question that might lead to misunderstandings during implementation. As a result, there is no bridge to students’ prior knowledge and the students cannot incorporate their contributions into the research question. | 8 |
Hypothesis Generation | ||
No hypothesis generated | No hypotheses. | 1 |
No understanding of hypothesis generation | No background subject-related knowledge is present, nor is fundamental knowledge of scientific knowledge acquisition through the generation of hypotheses. | 2 |
Suppositions not linked to research question | [...] generate a hypothesis that makes reference to the research question and subsequently guides the experimentation phase. | 1 |
Phase: Planning and Testing | ||
Planning | ||
Selection of materials unsystematic, incomplete and/or via trial-and-error | [...] that they throw together materials at random. [...] there are still problems with the selection of materials, since typically only the necessary materials are made available and the students try to use everything, even when it’s not necessary. Confusion with respect to materials selection, since more materials are available -> perhaps the students want to switch to using other materials during the experiment. | 19 |
Trying things out in an unstructured way (no plan, change all variables) | [...] change their minds while conducting the experiment if they get the feeling they have selected the “wrong” factor. | 3 |
Planning an experiment that (does not) achieve its objective | No foundation for planning an experiment. | 3 |
Dealing with variables in an unsystematic way (multiple variables are confounded or a single variable is varied unsystematically) | Students conduct the experiment with two independent variables simultaneously, which does not lead to an unambiguous result. When conducting the experiment, it could be difficult to stick to one influencing factor and not hold constant conditions constant. | 19 |
Aware of confounders, but do not eliminate them | That they do not recognize or eliminate confounders when constructing a self-developed experiment. | 2 |
Lack of control group approach | Furthermore, students often forget to create blinded or comparison samples. | 2 |
Variable selection | ||
Deciding which variables to include | [...] which influencing factors play a role in the solubility of sugar in water. [...] which experiment should investigate a certain influencing factor. | 42 |
Conducting the experiment | ||
Variables operationalized not at all or incorrectly Imprecise measurement/Measurement error | Imprecision in keeping time, since the time point at which all of the sugar has dissolved is often difficult to determine. [...] that they measure the water by eyeballing it or count without looking at a clock. | 14 |
Order of experimental steps | [...] students probably do not yet know exactly how an experiment with a phenomenon, planning, observation and interpretation is structured. I consider difficulties in conducting the experiment graver here [...]. | 12 |
Conducting experiment incorrectly | Experiment not conducted in a structured way. | 6 |
Documentation | Measurements not recorded. | 3 |
Phase: Evaluate Evidence | ||
Unexpected data are attributed to errors in conducting the experiment | They might change their results when they have the feeling that something is not right or they have done something incorrectly. | 1 |
Insufficient reflection on the experimental results | Errors are not taken into consideration. | 1 |
Replicability/validity Wrong conclusion drawn from consistent experiments | [...] replicability or precision of measurement will pose problems for the students. The students might not be able to correctly interpret their observations. | 2 1 |
Conclusions are not possible because variables were not varied systematically, and/or fallacious conclusions are drawn | [...] not investigate multiple influencing factors at the same time, since they then cannot say which factor actually influences the sugar’s dissolution. Analysis does not take place, causal conclusions are not possible. | 10 |
Data are not related (back) to hypothesis/research question | [...] hypotheses are actually confirmed or falsified based on the insights gained while conducting the experiment. | 1 |
Superordinate Category Decisions About | Subcategory | Anchoring Example | h | f |
---|---|---|---|---|
… the phenomenon | Retrieving (prior) knowledge about the phenomenon | The students need to visualize the phenomenon and think about how they can link it to their prior knowledge. | 4 | |
4 | 8% | |||
… the research question and/or hypotheses | Develop a research question/ hypothesis | To start with, the students should think about a research question (or a conjecture) that they can subsequently answer with the experiment. | 17 | |
Working with the research question/assigned task | They need to come to agreement amongst themselves on how they can best express the characteristic to be observed and in what way they will investigate it. | 2 | ||
Understanding the research question | Students need to understand the research question. | 1 | ||
20 | 36% | |||
… working with and identifying variables | Selecting one influencing factor | The students need to decide which influencing factor they want to test. | 59 | |
Controlling for other factors | Investigate one factor in the experiment! […] pay attention to other factors that remain constant. | 12 | ||
Decisions about the measured variable | It needs to be determined when the time will be stopped (when has the sugar dissolved?). | 8 | ||
Avoiding confounders | […] As part of this, the students must minimize the presence of confounding factors. | 3 | ||
Decisions about the dependent variable (degree of breakdown, amount) | They need to agree on whether to use ground sugar or sugar cubes. | 18 | ||
100 | 86% | |||
… planning | Selection of appropriate materials | Decision about selecting materials from the list of materials. | 36 | |
Planning the experiment | […] decide how they will proceed. | 17 | ||
Determining the order of work steps | The learners need to familiarize themselves with which work steps they will conduct in which order. | 4 | ||
Planning a control group experiment | At least one comparative experiment must be conducted. | 4 | ||
Replication/Reliability | Conduct each experiment at least twice. | 4 | ||
65 | 84% | |||
… conducting the experiment (including documentation) | Conducting the experiment | Conduct the experiment in accordance with the experimental plan. | 24 | |
Documentation | Selecting documentation of the experiment. | 21 | ||
Observation | The students now observe […]. | 15 | ||
60 | 70% | |||
… analysis and interpretation | Conclusion | They need to interpret their results (conclusion). | 17 | |
Evaluating evidence/causal relationships | Based on what evidence they can see how the influencing factor they are investigating affects the sugar’s dissolution. | 8 | ||
Reflecting on errors | [...] pay attention to errors that might have crept in and potentially conduct the experiment again. | 7 | ||
Referring back to the hypothesis/research question | Test the hypothesis Analysis (Was the hypothesis refuted or not?) | 6 9 | ||
Paying attention to validity | Does the experiment I have conducted actually answer my question? | 2 | ||
49 | 50% | |||
Decisions unrelated to the scientific method | Dividing up tasks within the group | They need to divide up the various tasks within the experiment […] | 11 | |
Completing the group work together | The group should work together so that everyone is aware of what has been done. | 9 | ||
Working precisely and carefully | The students need to work very precisely. | 3 | ||
Other | Time management: “The time allotted should also be considered.” | 2 | ||
Cleaning up after the experiment | 1 | |||
Alignment with teacher (minimizing errors) | 1 | |||
27 | 38% |
Item | Biology (n = 30) | Chemistry (n = 20) | ||
---|---|---|---|---|
M (SD) | rit | M (SD) | rit | |
Experimentation-related diagnostic activities | ||||
Even when I am experiencing stress, I can still diagnose students’ errors in experimentation in biology/chemistry class well. | 2.20 (0.71) | 0.708 | 2.40 (0.60) | 0.524 |
I am certain that I am able to recognize children’s specific difficulties in experimentation in biology/chemistry even when under a large amount of time pressure. | 2.40 (0.77) | 0.737 | 2.75 (0.44) | 0.447 |
In biology/chemistry, I am able to accurately assess my students’ level of learning prerequisites, even when I have little time available. | 2.43 (0.63) | 0.603 | 2.65 (0.50) | 0.380 |
In biology/chemistry, I am able to accurately assess my students’ experimentation skills, even when I have little time available. | 2.37 (0.72) | 0.803 | 2.45 (0.51) | 0.430 |
Mscale = 2.35 SDscale = 0.60 Cronbachs α = 0.86 | Mscale = 2.56 SDscale = 0.36 Cronbachs α = 0.66 | |||
General diagnostic activities | ||||
I am able to successfully integrate diagnostic activities to accompany learning in my biology/chemistry instruction, even when I am under time pressure. | 2.13 (0.78) | 0.628 | 2.20 (0.62) | 0.217 |
Despite a high level of heterogeneity, I am able to create tasks in biology/chemistry that allow me to appropriately check both weaker and stronger students’ knowledge levels. | 2.57 (0.77) | 0.665 | 2.50 (0.69) | 0.546 |
I am able to successfully take into account students’ learning processes when formulating individual learning goals in biology/chemistry, even when these differ markedly. | 2.47 (0.78) | 0.743 | 2.35 (0.67) | 0.440 |
In biology/chemistry, I am able to accurately assess my students’ thought and work processes, even when I have little time available. | 2.37 (0.67) | 0.576 | 2.55 (0.51) | 0.393 |
Mscale = 2.38 SDscale = 0.61 Cronbachs α = 0.83 | Mscale = 2.40 SDscale = 0.42 Cronbachs α = 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilfert-Rüppell, D.; Meier, M.; Horn, D.; Höner, K. Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics. Educ. Sci. 2021, 11, 629. https://doi.org/10.3390/educsci11100629
Hilfert-Rüppell D, Meier M, Horn D, Höner K. Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics. Education Sciences. 2021; 11(10):629. https://doi.org/10.3390/educsci11100629
Chicago/Turabian StyleHilfert-Rüppell, Dagmar, Monique Meier, Daniel Horn, and Kerstin Höner. 2021. "Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics" Education Sciences 11, no. 10: 629. https://doi.org/10.3390/educsci11100629
APA StyleHilfert-Rüppell, D., Meier, M., Horn, D., & Höner, K. (2021). Professional Knowledge and Self-Efficacy Expectations of Pre-Service Teachers Regarding Scientific Reasoning and Diagnostics. Education Sciences, 11(10), 629. https://doi.org/10.3390/educsci11100629