Multi-Omic Approaches in Cancer-Related Micropeptide Identification
Abstract
:1. Introduction
2. Multi-Omic Approaches for Micropeptide Identification and Detection
Techniques | Details | Limitations/Challenges |
---|---|---|
Ribo-Seq [13,14,16,17,18] | Identifies mRNA fragments bound to ribosomes, detects non-traditional start codons, combined with other omics techniques for reliability | Complexity of data, cost, sensitivity to conditions, misses low-abundance transcripts, cannot detect protein stability, degradation, folding, or PTMs |
Poly-Ribo-Seq [15] | Profiles polysomal fractions, distinguishes mRNAs bound by multiple ribosomes, reduces translational noise | Technical complexity, cost, sensitivity |
Mass Spectrometry (MS) [21,22,23,24,25,26,27,28] | Identifies and quantifies proteins, ionizes proteins and measures mass-to-charge ratio, uses appropriate libraries for micropeptide detection | Dynamic range limitations, risk of protein loss or degradation, trypsin digestion issues |
Machine Learning [30,31,32,33,34,35] | Predicts ORFs, uses features such as DNA Fickett score, transcript length, stop codon frequency, GC content, molecular weight, isoelectric point, GRAVY score, instability index | Struggles with short length of ORFs and lack of conservation of micropeptides, prediction algorithm quality may vary |
Spatial Omics [36,37] | A spatial insight into protein synthesis at a single-cell and subcellular resolution | The integration of diverse data modalities, computational analysis, and the standardization of protocols |
RNA Sequencing for sORF Identification and Expression Profiling [38,39] | Used for the identification and expression profiling of short open reading frames (sORFs) | Issues with detection of small ORFs, RNA expression does not imply translation |
CRISPR-Cas9-Based Methods [42] | Can be used to precisely target and edit specific genetic sequences | Risk of off-target effects, changes in stability after tagging |
3. Non-Canonical Micropeptides in Cancer
3.1. Cancer-Suppressing Micropeptides
Micropeptide | Encoded by | Function | Mechanism | Cancer Type |
---|---|---|---|---|
MIAC [44] | lncRNA AC025154.2 | Inhibits renal cell carcinoma progression | Inhibits EGFR expression and downstream signaling | Renal cancer |
MIAC [45] | lncRNA AC025154.2 | Suppresses head and neck squamous cell carcinoma proliferation and metastasis | Interacts with AQP2 and regulates SEPT2-ITGB4 axis | Head and neck cancer |
CIP2A-BP [46] | lncRNA LINC00665 | Inhibits migration and invasion of triple-negative breast cancer cells | binds CIP2A to inhibit PI3K/AKT/NFkB pathway | Breast cancer |
HOXB-AS3 [47] | lncRNA HOXB-AS3 | Suppresses cancer cell growth, colony formation, migration, and invasion | Binds to heterogeneous nuclear ribonucleoproteins A1, suppresses aerobic glycolysis | Colorectal cancer |
KRASIM [48] | lncRNA NCBP2-AS2 | Inhibits ERK signaling | Interacts with KRAS | Hepatocellular carcinoma |
PINT87aa [49] | circRNA formed by exon 2 of LINC-PINT | Induces cellular senescence | Binds to DNA-binding domain of FOXM1, inhibits PHB2 transcription | Hepatocellular carcinoma |
AF127577.4-ORF [50] | lncRNA AF127577.4 | Diminishes glioblastoma cell proliferation | Regulates METTL3 and ERK pathway | Glioblastoma |
miPEP133 [51] | precursor of miR-34a | Tumor-suppressor | Interacts with HSPA9 to disrupt its function | Ovarian cancer |
ASRPS [53] | lncRNA ASRPS | Inhibits angiogenesis | Interacts with STAT3, downregulates VEGF | Breast cancer |
MP31 [54] | uORF in 5′UTR of PTEN | Causes mitochondrial damage in glioblastoma cells | Competes with V-ATPase A1 for lactate dehydrogenase B binding | Glioblastoma |
TINCR [55] | lncRNA TINCR | Tumor-suppressor | TP53 target gene | Squamous cell carcinoma |
AC115619–22aa [56] | lncRNA AC115619 | Represses cancer growth and metastasis | Binds to WTAP to disrupt its function | Hepatocellular carcinoma |
SMIM26 [57] | lncRNA LINC00493 | Exhibits anti-metastatic activity, maintains mitochondrial activation | Interacts with AGK to deactivate AKT signaling, interacts with SLC25A11 | Clear cell renal cell carcinoma |
MPM [58] | lncRNA LINC00116 | Inhibits hepatocellular carcinoma metastasis | Regulates the activity of mitochondrial complex 1 through its interaction with NDUFA7 | Hepatocellular carcinoma |
3.2. Cancer-Promoting Micropeptides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Soerjomataram, I.; Bray, F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Fawell, S.; Floc’H, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and Opportunities in Cancer Drug Resistance. Chem. Rev. 2020, 121, 3297–3351. [Google Scholar] [CrossRef] [PubMed]
- Haider, T.; Pandey, V.; Banjare, N.; Gupta, P.N.; Soni, V. Drug Resistance in Cancer: Mechanisms and Tackling Strategies. Pharmacol. Rep. 2020, 72, 1125–1151. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Kennedy, L.B.; Salama, A.K.S. A Review of Cancer Immunotherapy Toxicity. CA Cancer J. Clin. 2020, 70, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.W.; Yi, Z.; Weissman, J.S.; Chen, J. The Dark Proteome: Translation from Noncanonical Open Reading Frames. Trends Cell Biol. 2022, 32, 243–258. [Google Scholar] [CrossRef]
- Makarewich, C.A.; Olson, E.N. Mining for Micropeptides. Trends Cell Biol. 2017, 27, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ho, L.; Tergaonkar, V. SORF-Encoded MicroPeptides: New Players in Inflammation, Metabolism, and Precision Medicine. Cancer Lett. 2021, 500, 263–270. [Google Scholar] [CrossRef]
- Prensner, J.R.; Enache, O.M.; Luria, V.; Krug, K.; Clauser, K.R.; Dempster, J.M.; Karger, A.; Wang, L.; Stumbraite, K.; Wang, V.M.; et al. Noncanonical Open Reading Frames Encode Functional Proteins Essential for Cancer Cell Survival. Nat. Biotechnol. 2021, 39, 697–704. [Google Scholar] [CrossRef]
- Brunet, M.A.; Leblanc, S.; Roucou, X. Reconsidering Proteomic Diversity with Functional Investigation of Small ORFs and Alternative ORFs. Exp. Cell Res. 2020, 393, 112057. [Google Scholar] [CrossRef]
- Posner, Z.; Yannuzzi, I.; Prensner, J.R. Shining a Light on the Dark Proteome: Non-Canonical Open Reading Frames and Their Encoded Miniproteins as a New Frontier in Cancer Biology. Protein Sci. 2023, 32, e4708. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, S.; Wu, M. Novel Insights into Noncanonical Open Reading Frames in Cancer. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188755. [Google Scholar] [CrossRef] [PubMed]
- Ingolia, N.T.; Ghaemmaghami, S.; Newman, J.R.S.; Weissman, J.S. Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science 2009, 324, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Calviello, L.; Mukherjee, N.; Wyler, E.; Zauber, H.; Hirsekorn, A.; Selbach, M.; Landthaler, M.; Obermayer, B.; Ohler, U. Detecting Actively Translated Open Reading Frames in Ribosome Profiling Data. Nat. Methods 2016, 13, 165–170. [Google Scholar] [CrossRef]
- Aspden, J.L.; Eyre-Walker, Y.C.; Phillips, R.J.; Amin, U.; Mumtaz, M.A.S.; Brocard, M.; Couso, J.P. Extensive Translation of Small Open Reading Frames Revealed by Poly-Ribo-Seq. Elife 2014, 3, e03528. [Google Scholar] [CrossRef] [PubMed]
- van Heesch, S.; Witte, F.; Schneider-Lunitz, V.; Schulz, J.F.; Adami, E.; Faber, A.B.; Kirchner, M.; Maatz, H.; Blachut, S.; Sandmann, C.L.; et al. The Translational Landscape of the Human Heart. Cell 2019, 178, 242–260.e29. [Google Scholar] [CrossRef]
- Patraquim, P.; Magny, E.G.; Pueyo, J.I.; Platero, A.I.; Couso, J.P. Translation and Natural Selection of Micropeptides from Long Non-Canonical RNAs. Nat. Commun. 2022, 13, 6515. [Google Scholar] [CrossRef]
- VanInsberghe, M.; van den Berg, J.; Andersson-Rolf, A.; Clevers, H.; van Oudenaarden, A. Single-Cell Ribo-Seq Reveals Cell Cycle-Dependent Translational Pausing. Nature 2021, 597, 561–565. [Google Scholar] [CrossRef]
- Prensner, J.R.; Abelin, J.G.; Kok, L.W.; Clauser, K.R.; Mudge, J.M.; Ruiz-Orera, J.; Bassani-Sternberg, M.; Moritz, R.L.; Deutsch, E.W.; van Heesch, S. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol. Cell. Proteom. 2023, 22, 100631. [Google Scholar] [CrossRef]
- Su, D.; Ding, C.; Qiu, J.; Yang, G.; Wang, R.; Liu, Y.; Tao, J.; Luo, W.; Weng, G.; Zhang, T. Ribosome Profiling: A Powerful Tool in Oncological Research. Biomark. Res. 2024, 12, 11. [Google Scholar] [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Pasut, A.; Matsumoto, M.; Yamashita, R.; Fung, J.; Monteleone, E.; Saghatelian, A.; Nakayama, K.I.; Clohessy, J.G.; Pandolfi, P.P. MTORC1 and Muscle Regeneration Are Regulated by the LINC00961-Encoded SPAR Polypeptide. Nature 2017, 541, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Khitun, A.; Slavoff, S.A. Proteomic Detection and Validation of Translated Small Open Reading Frames. Curr. Protoc. Chem. Biol. 2019, 11, e77. [Google Scholar] [CrossRef] [PubMed]
- Menschaert, G.; Van Criekinge, W.; Notelaers, T.; Koch, A.; Crappé, J.; Gevaert, K.; Van Damme, P. Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-Based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and near-Cognate Translation Initiation Events. Mol. Cell. Proteom. 2013, 12, 1780–1790. [Google Scholar] [CrossRef] [PubMed]
- Bánfai, B.; Jia, H.; Khatun, J.; Wood, E.; Risk, B.; Gundling, W.E.; Kundaje, A.; Gunawardena, H.P.; Yu, Y.; Xie, L.; et al. Long Noncoding RNAs Are Rarely Translated in Two Human Cell Lines. Genome Res. 2012, 22, 1646–1657. [Google Scholar] [CrossRef]
- Ma, J.; Diedrich, J.K.; Jungreis, I.; Donaldson, C.; Vaughan, J.; Kellis, M.; Yates, J.R.; Saghatelian, A. Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides. Anal. Chem. 2016, 88, 3967–3975. [Google Scholar] [CrossRef]
- Subbannayya, Y.; Bhatta, A.; Pinto, S.M.; Fitzgerald, K.A.; Kandasamy, R.K. Proteogenomics Analysis Reveals Novel Micropeptides in Primary Human Immune Cells. Immuno 2022, 2, 283–292. [Google Scholar] [CrossRef]
- Michalski, A.; Cox, J.; Mann, M. More than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority Is Inaccessible to Data-Dependent LC-MS/MS. J. Proteome Res. 2011, 10, 1785–1793. [Google Scholar] [CrossRef]
- Couso, J.P. Finding SmORFs: Getting Closer. Genome. Biol. 2015, 16, 189. [Google Scholar] [CrossRef]
- Kang, Y.J.; Yang, D.C.; Kong, L.; Hou, M.; Meng, Y.Q.; Wei, L.; Gao, G. CPC2: A Fast and Accurate Coding Potential Calculator Based on Sequence Intrinsic Features. Nucleic Acids Res. 2017, 45, W12–W16. [Google Scholar] [CrossRef]
- Crappé, J.; Van Criekinge, W.; Trooskens, G.; Hayakawa, E.; Luyten, W.; Baggerman, G.; Menschaert, G. Combining in Silico Prediction and Ribosome Profiling in a Genome-Wide Search for Novel Putatively Coding SORFs. BMC Genom. 2013, 14, 648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Gribskov, M. MiPepid: MicroPeptide Identification Tool Using Machine Learning. BMC Bioinform. 2019, 20, 559. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, G.; Graziani, C.; Lachi, V.; Bongini, P.; Pancino, N.; Bianchini, M.; Chiarugi, D.; Valleriani, A.; Andreini, P. A Neural Network Approach for the Analysis of Reproducible Ribo–Seq Profiles. Algorithms 2022, 15, 274. [Google Scholar] [CrossRef]
- Shao, B.; Yan, J.; Zhang, J.; Liu, L.; Chen, Y.; Buskirk, A.R. Riboformer: A Deep Learning Framework for Predicting Context-Dependent Translation Dynamics. Nat. Commun. 2024, 15, 2011. [Google Scholar] [CrossRef]
- Chen, C.; Hou, J.; Tanner, J.J.; Cheng, J. Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis. Int. J. Mol. Sci. 2020, 21, 2873. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Huang, J.; Ren, J.; Wang, C.K.; Tang, Z.; Zhou, H.; Zhou, Y.; Shi, H.; Aditham, A.; Sui, X.; et al. Spatially Resolved Single-Cell Translatomics at Molecular Resolution. Science 2023, 380, eadd3067. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Yang, J.; Zhao, Q.; Tang, N.; Chen, C.; Li, H.; Cheng, C.; Xie, M.; Yang, Y.; et al. Tissue-and Stage-Specific Landscape of the Mouse Translatome. Nucleic Acids Res. 2021, 49, 6165–6180. [Google Scholar] [CrossRef]
- Pan, J.; Wang, R.; Shang, F.; Ma, R.; Rong, Y.; Zhang, Y. Functional Micropeptides Encoded by Long Non-Coding RNAs: A Comprehensive Review. Front. Mol. Biosci. 2022, 9, 817517. [Google Scholar] [CrossRef]
- Polenkowski, M.; de Lara, S.B.; Allister, A.B.; Nguyen, T.N.Q.; Tamura, T.; Tran, D.D.H. Identification of Novel Micropeptides Derived from Hepatocellular Carcinoma-specific Long Noncoding RNA. Int. J. Mol. Sci. 2022, 23, 58. [Google Scholar] [CrossRef]
- Ouspenskaia, T.; Law, T.; Clauser, K.R.; Klaeger, S.; Sarkizova, S.; Aguet, F.; Li, B.; Christian, E.; Knisbacher, B.A.; Le, P.M.; et al. Unannotated Proteins Expand the MHC-I-Restricted Immunopeptidome in Cancer. Nat. Biotechnol. 2022, 40, 209–217. [Google Scholar] [CrossRef]
- Leong, A.Z.X.; Lee, P.Y.; Mohtar, M.A.; Syafruddin, S.E.; Pung, Y.F.; Low, T.Y. Short Open Reading Frames (SORFs) and Microproteins: An Update on Their Identification and Validation Measures. J. Biomed. Sci. 2022, 29, 19. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wei, Y.; Zhang, P.; Lin, K.; He, D.; Teng, H.; Manyam, G.; Zhang, Z.; Liu, W.; Lee, H.R.L.; et al. CRISPR–Cas9-Based Functional Interrogation of Unconventional Translatome Reveals Human Cancer Dependency on Cryptic Non-Canonical Open Reading Frames. Nat. Struct. Mol. Biol. 2023, 30, 1878–1892. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Leng, R.X.; Fan, Y.G.; Pan, H.F.; Ye, D.Q. Translation of Noncoding RNAs: Focus on LncRNAs, Pri-MiRNAs, and CircRNAs. Exp. Cell Res. 2017, 361, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, G.; Jin, X.; Guo, H.; Setrerrahmane, S.; Xu, X.; Li, T.; Lin, Y.; Xu, H. Micropeptide MIAC Inhibits the Tumor Progression by Interacting with AQP2 and Inhibiting EREG/EGFR Signaling in Renal Cell Carcinoma. Mol. Cancer 2022, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, X.; Zhang, Y.; Wu, H.; Zhou, H.; Ding, X.; Zhang, X.; Jin, X.; Wang, Y.; Yin, X.; et al. Micropeptide MIAC Inhibits HNSCC Progression by Interacting with Aquaporin 2. J. Am. Chem. Soc. 2020, 142, 6708–6716. [Google Scholar] [CrossRef]
- Guo, B.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Wang, Y.; Zhang, S.; Wu, R.; Lu, J.; et al. Micropeptide CIP 2A- BP Encoded by LINC 00665 Inhibits Triple-negative Breast Cancer Progression. EMBO J. 2020, 39, e102190. [Google Scholar] [CrossRef]
- Huang, J.Z.; Chen, M.; Chen, D.; Gao, X.C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.R. A Peptide Encoded by a Putative LncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol. Cell 2017, 68, 171–184.e6. [Google Scholar] [CrossRef]
- Xu, W.; Deng, B.; Lin, P.; Liu, C.; Li, B.; Huang, Q.; Zhou, H.; Yang, J.; Qu, L. Ribosome Profiling Analysis Identified a KRAS-Interacting Microprotein That Represses Oncogenic Signaling in Hepatocellular Carcinoma Cells. Sci. China Life Sci. 2020, 63, 529–542. [Google Scholar] [CrossRef]
- Xiang, X.; Fu, Y.; Zhao, K.; Miao, R.; Zhang, X.; Ma, X.; Liu, C.; Zhang, N.; Qu, K. Cellular Senescence in Hepatocellular Carcinoma Induced by a Long Non-Coding RNA-Encoded Peptide PINT87aa by Blocking FOXM1-Mediated PHB2. Theranostics 2021, 11, 4929–4944. [Google Scholar] [CrossRef]
- Du, B.; Zhang, Z.; Jia, L.; Zhang, H.; Zhang, S.; Wang, H.; Cheng, Z. Micropeptide AF127577.4-ORF Hidden in a LncRNA Diminishes Glioblastoma Cell Proliferation via the Modulation of ERK2/METTL3 Interaction. Sci. Rep. 2024, 14, 12090. [Google Scholar] [CrossRef]
- Kang, M.; Tang, B.; Li, J.; Zhou, Z.; Liu, K.; Wang, R.; Jiang, Z.; Bi, F.; Patrick, D.; Kim, D.; et al. Identification of MiPEP133 as a Novel Tumor-Suppressor Microprotein Encoded by MiR-34a Pri-MiRNA. Mol. Cancer 2020, 19, 143. [Google Scholar] [CrossRef] [PubMed]
- Camarena, M.E.; Theunissen, P.; Ruiz, M.; Ruiz-Orera, J.; Calvo-Serra, B.; Castelo, R.; Castro, C.; Sarobe, P.; Fortes, P.; Perera-Bel, J.; et al. Microproteins Encoded by Noncanonical ORFs Are a Major Source of Tumor-Specific Antigens in a Liver Cancer Patient Meta-Cohort. Sci. Adv. 2024, 10, eadn3628. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Guo, B.; Zhang, S.; Wu, R.; Zhang, Z.; et al. LncRNA-Encoded Polypeptide ASRPS Inhibits Triple-Negative Breast Cancer Angiogenesis. J. Exp. Med. 2020, 217, e20190950. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Chen, Z.; Yang, X.; Gao, Y.; Zhong, J.; Li, Y.; Xiao, F.; Wang, X.; Shi, Y.; Zhang, N. Upstream Open Reading Frame-Encoded MP31 Disrupts the Mitochondrial Quality Control Process and Inhibits Tumorigenesis in Glioblastoma. Neuro-Oncology 2023, 25, 1947–1962. [Google Scholar] [CrossRef]
- Morgado-Palacin, L.; Brown, J.A.; Martinez, T.F.; Garcia-Pedrero, J.M.; Forouhar, F.; Quinn, S.A.; Reglero, C.; Vaughan, J.; Heydary, Y.H.; Donaldson, C.; et al. The TINCR Ubiquitin-like Microprotein Is a Tumor Suppressor in Squamous Cell Carcinoma. Nat. Commun. 2023, 14, 1328. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, T.; Yan, L.; Zhu, S.; Jin, W.; Bai, Y.; Zeng, Y.; Zhang, X.F.; Yin, Z.; Yang, J.; et al. Hypoxia-Responsive LncRNA AC115619 Encodes a Micropeptide That Suppresses M6A Modifications and Hepatocellular Carcinoma Progression. Cancer Res. 2023, 83, 2496–2512. [Google Scholar] [CrossRef]
- Meng, K.; Lu, S.; Li, Y.; Hu, L.; Zhang, J.; Cao, Y.; Wang, Y.; Zhang, C.Z.; He, Q. LINC00493-encoded Microprotein SMIM26 Exerts Anti-metastatic Activity in Renal Cell Carcinoma. EMBO Rep. 2023, 24, e56282. [Google Scholar] [CrossRef]
- Xiao, M.H.; Lin, Y.F.; Xie, P.P.; Chen, H.X.; Deng, J.W.; Zhang, W.; Zhao, N.; Xie, C.; Meng, Y.; Liu, X.; et al. Downregulation of a Mitochondrial Micropeptide, MPM, Promotes Hepatoma Metastasis by Enhancing Mitochondrial Complex I Activity. Mol. Ther. 2022, 30, 714–725. [Google Scholar] [CrossRef]
- Ge, Q.; Jia, D.; Cen, D.; Qi, Y.; Shi, C.; Li, J.; Sang, L.; Yang, L.J.; He, J.; Lin, A.; et al. Micropeptide ASAP Encoded by LINC00467 Promotes Colorectal Cancer Progression by Directly Modulating ATP Synthase Activity. J. Clin. Investig. 2021, 131, e152911. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, Z.; Han, H.; Wang, B.; Li, W.; Mao, C.; Liu, S. Peptide SMIM30 Promotes HCC Development by Inducing SRC/YES1 Membrane Anchoring and MAPK Pathway Activation. J. Hepatol. 2020, 73, 1155–1169. [Google Scholar] [CrossRef]
- Xie, C.; Wang, F.Y.; Sang, Y.; Chen, B.; Huang, J.H.; He, F.J.; Li, H.; Zhu, Y.; Liu, X.; Zhuang, S.M.; et al. Mitochondrial Micropeptide STMP1 Enhances Mitochondrial Fission to Promote Tumor Metastasis. Cancer Res. 2022, 82, 2431–2443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liao, Z.; Wang, W.; Liu, Y.; Zhu, H.; Liang, H.; Zhang, B.; Chen, X. A Micropeptide JunBP Regulated by TGF-β Promotes Hepatocellular Carcinoma Metastasis. Oncogene 2023, 42, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Guo, B.; Zhang, L.; Zhu, X.; Zhao, P.; Deng, J.; Zheng, J.; Li, F.; Wang, Y.; Zhang, S.; et al. A Micropeptide XBP1SBM Encoded by LncRNA Promotes Angiogenesis and Metastasis of TNBC via XBP1s Pathway. Oncogene 2022, 41, 2163–2172. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Liu, X.; Deng, Y.; Zheng, J.; Deng, J.; Wang, Y.; Guo, B.; Li, F.; Chen, X.; et al. LncRNA-Encoded Micropeptide ACLY-BP Drives Lipid Deposition and Cell Proliferation in Clear Cell Renal Cell Carcinoma via Maintenance of ACLY Acetylation. Mol. Cancer Res. 2023, 21, 1064–1078. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Han, C.; Huang, W.; Sun, Y.; Fang, K.; Zeng, Z.; Yang, Q.; Pan, Q.; Chen, T.; et al. The Oncomicropeptide APPLE Promotes Hematopoietic Malignancy by Enhancing Translation Initiation. Mol. Cell 2021, 81, 4493–4508.e9. [Google Scholar] [CrossRef]
- Hofman, D.A.; Ruiz-Orera, J.; Yannuzzi, I.; Murugesan, R.; Brown, A.; Clauser, K.R.; Condurat, A.L.; van Dinter, J.T.; Engels, S.A.G.; Goodale, A.; et al. Translation of Non-Canonical Open Reading Frames as a Cancer Cell Survival Mechanism in Childhood Medulloblastoma. Mol. Cell 2024, 84, 261–276.e18. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Qing, X.; Wei, J.; Mo, H.; Liu, Y.; Zhi, Y.; Lu, W.; Zheng, M.; Zhang, W.; Chen, Y.; et al. The DDUP Protein Encoded by the DNA Damage-Induced CTBP1-DT LncRNA Confers Cisplatin Resistance in Ovarian Cancer. Cell Death Dis. 2023, 14, 568. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, B.; Gu, F.; Liu, H.; Wu, H.; Yao, F.; Zheng, H.; Fu, H.; Chong, W.; Cai, S.; et al. Micropeptide PACMP Inhibition Elicits Synthetic Lethal Effects by Decreasing CtIP and Poly(ADP-Ribosyl)Ation. Mol. Cell 2022, 82, 1297–1312.e8. [Google Scholar] [CrossRef]
- Cui, Y.; Peng, J.; Zheng, M.; Ge, H.; Wu, X.; Xia, Y.; Huang, Y.; Wang, S.; Yin, Y.; Fu, Z.; et al. TRPC5OS Induces Tumorigenesis by Increasing ENO1-Mediated Glucose Uptake in Breast Cancer. Transl. Oncol. 2022, 22, 101447. [Google Scholar] [CrossRef]
- Zhu, K.G.; Yang, J.; Zhu, Y.; Zhu, Q.; Pan, W.; Deng, S.; He, Y.; Zuo, D.; Wang, P.; Han, Y.; et al. The Microprotein Encoded by Exosomal LncAKR1C2 Promotes Gastric Cancer Lymph Node Metastasis by Regulating Fatty Acid Metabolism. Cell Death Dis. 2023, 14, 708. [Google Scholar] [CrossRef]
- Pei, H.; Dai, Y.; Yu, Y.; Tang, J.; Cao, Z.; Zhang, Y.; Li, B.; Nie, J.; Hei, T.K.; Zhou, G. The Tumorigenic Effect of LncRNA AFAP1-AS1 Is Mediated by Translated Peptide ATMLP Under the Control of M6A Methylation. Adv. Sci. 2023, 10, 2300314. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xu, W.; Jie, Y.; Chong, Y. Subcellular Localization and Relevant Mechanisms of Human Cancer-Related Micropeptides. FASEB J. 2023, 37, e23270. [Google Scholar] [CrossRef] [PubMed]
- Bakhti, S.Z.; Latifi-Navid, S. Non-Coding RNA-Encoded Peptides/Proteins in Human Cancer: The Future for Cancer Therapy. Curr. Med. Chem. 2022, 29, 3819–3835. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wu, Y.; Cai, J.; Zhang, D.; Lan, D.; Dai, X.; Liu, S.; Song, T.; Wang, X.; Kong, Q.; et al. Micropeptides: Potential Treatment Strategies for Cancer. Cancer Cell Int. 2024, 24, 134. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, S.; Meng, N.; He, Y.; Lu, R.; Yan, G.R. NcRNA-Encoded Peptides or Proteins and Cancer. Mol. Ther. 2019, 27, 1718–1725. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Q.; Fang, Y.; Zhu, Y.; Chen, F.; Zeng, W.; Ouyang, D.; Dong, J. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Mol. Pharm. 2024, 21, 4116–4127. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in Peptide Drug Discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Berillo, D.; Yeskendir, A.; Zharkinbekov, Z.; Raziyeva, K.; Saparov, A. Peptide-Based Drug Delivery Systems. Med. 2021, 57, 1209. [Google Scholar] [CrossRef]
- Yuanyuan, J.; Xinqiang, Y. Micropeptides Identified from Human Genomes. Journal of Proteome Research. Am. Chem. 2022, 21, 865–873. [Google Scholar] [CrossRef]
- Vitorino, R.; Guedes, S.; Amado, F.; Santos, M.; Akimitsu, N. The Role of Micropeptides in Biology. Cell. Mol. Life Sci. 2021, 78, 3285–3298. [Google Scholar] [CrossRef] [PubMed]
- Tharakan, R.; Sawa, A. Minireview: Novel Micropeptide Discovery by Proteomics and Deep Sequencing Methods. Front. Genet. 2021, 12, 651485. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ran, Y.; Li, H.; Wen, J.; Cui, X.; Zhang, X.; Guan, X.; Cheng, M. Micropeptides: Origins, Identification, and Potential Role in Metabolism-Related Diseases. J. Zhejiang Univ. Sci. B 2023, 24, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
Micropeptide | Encoded by | Function | Mechanism | Cancer Type |
---|---|---|---|---|
ASAP [59] | lncRNA LINC00467 | Drives colorectal cancer cell proliferation | Binds to ATP synthase, promotes activity | Colorectal cancer |
SMIM30 [60] | lncRNA LINC00998 | Drives cancer proliferation and growth | Interacts with SRC/YES1, activates MAPK signaling pathway | Hepatocellular carcinoma |
STMP1 [61] | C7orf73 | Promotes tumor cell migration | Interacts with DRP1 in mitochondria | Hepatocellular carcinoma |
JunBP [62] | lincRNA LINC02551 | Drives cancer metastasis | Binds to c-Jun, promotes activation | Hepatocellular carcinoma |
XBP1SBM [63] | lncRNA MLLT4-AS1 | Promotes growth, angiogenesis, and metastasis | Enhances VEGF expression | Breast cancer |
ACLY-BP [64] | LINC00887 | Drives cell proliferation | Enhances ACLY stability, increases acetyl-CoA production and lipid deposition | Renal cell carcinoma |
APPLE [65] | lncRNA ASH1L-AS1 | Initiates protein translation | Works within PABPC1 complex | Leukemic cancer |
ASNSD1-uORF [66] | upstream ORF of ASNSD1 | Necessary for cell survival | Interacts with prefoldin-like chaperone complex | Childhood medulloblastoma |
DDUP [67] | lncRNA CTBP1-DT | Contributes to cisplatin resistance | Sustains DNA damage repair signaling | Ovarian cancer |
PACMP [68] | lncRNA CTD-2256P15.2 | Promotes growth, drives cancer therapy resistance | Inhibits CtIP-KLHL15 association, enhances PARP1-dependent poly(ADP-ribosyl)ation | Breast cancer |
TRPC5OS [69] | antisense strand of TRPC5 | Induces tumorigenesis | Interacts with ENO1 to increase glucose uptake | Breast cancer |
pep-AKR1C2 [70] | exo-lncRNA lncAKR1C2 | Promotes lymphangiogenesis and metastasis | Promotes expression of CPT1A by decreasing YAP phosphorylation | Metastatic gastric cancer |
ATMLP [71] | lncRNA | Promotes tumorigenesis | Suppresses autolysosome formation through interaction with NIPSNAP1 | Non-small cell lung cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrbnjak, K.; Sewduth, R.N. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes 2024, 12, 26. https://doi.org/10.3390/proteomes12030026
Vrbnjak K, Sewduth RN. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes. 2024; 12(3):26. https://doi.org/10.3390/proteomes12030026
Chicago/Turabian StyleVrbnjak, Katarina, and Raj Nayan Sewduth. 2024. "Multi-Omic Approaches in Cancer-Related Micropeptide Identification" Proteomes 12, no. 3: 26. https://doi.org/10.3390/proteomes12030026
APA StyleVrbnjak, K., & Sewduth, R. N. (2024). Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes, 12(3), 26. https://doi.org/10.3390/proteomes12030026