Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Extraction
2.2. Extraction Method A
2.3. Extraction Method B
2.4. Two-Dimensional Electrophoresis
2.5. Image and Statistical Analysis
2.6. Protein Spot Assignment by Mass Spectrometry
2.7. Multivariate and Enrichment Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vainshtein, A.; Sandri, M. Signaling Pathways That Control Muscle Mass. Int. J. Mol. Sci. 2020, 21, 4759. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, J.; Rigbolt, K.T.G.; Blagoev, B.; Pedersen, B.K.; Kratchmarova, I. Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation. Mol. Cell Proteom. 2010, 9, 2482–2496. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, J.; Pedersen, B.K.; Kratchmarova, I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol. Biosyst. 2011, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Baskin, K.K.; Winders, B.R.; Olson, E.N. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015, 21, 237–248. [Google Scholar] [CrossRef]
- Pahlavani, H.A. Exercise therapy to prevent and treat Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1243869. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; González, A.; García-Hermoso, A.; Amézqueta, I.L.; Izquierdo, M.; Díez, J. Revisiting skeletal myopathy and exercise training in heart failure: Emerging role of myokines. Metabolism 2023, 138, 155348. [Google Scholar] [CrossRef]
- Beaufils, M.; Travard, L.; Rendu, J.; Marty, I. Therapies for RYR1-Related Myopathies: Where We Stand and the Perspectives. Curr. Pharm. Des. 2022, 28, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Goebel, H.H.; Dittmayer, C.; Stenzel, W. Congenital myopathies: The current status. Indian J. Pathol. Microbiol. 2022, 65, S271–S276. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Metabolic Myopathies. Continuum Minneap. Minn. 2022, 28, 1752–1777. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.J.; Passos, B.A.; Grangeia, A.; Guimarães, J.; Braz, L. Congenital myopathies in adults: A diagnosis not to overlook. Acta Neurol. Scand. 2022, 146, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Gonorazky, H.D.; Dowling, J.J.; Volpatti, J.R.; Vajsar, J. Signs and Symptoms in Congenital Myopathies. Semin. Pediatr. Neurol. 2019, 29, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Bhai, S.F.; Vissing, J. Diagnosis and management of metabolic myopathies. Muscle Nerve 2023, 68, 250–256. [Google Scholar] [CrossRef]
- Swain, M.; Uppin, M. Evolving classification and role of muscle biopsy in diagnosis of inflammatory myopathies. Indian. J. Pathol. Microbiol. 2022, 65, S241–S251. [Google Scholar] [CrossRef]
- Younger, D.S. Congenital Myopathies. In Handbook of Clinical Neurology; Elsevirer: Amsterdam, The Netherlands, 2023; Volume 195, pp. 533–561. [Google Scholar] [CrossRef]
- Eckhardt, J.; Ruiz, A.; Koenig, S.; Frieden, M.; Meier, H.; Schmidt, A.; Treves, S.; Zorzato, F. Quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying recessive Ryr1 mutations linked to congenital myopathies. eLife 2023, 12, e83618. [Google Scholar] [CrossRef]
- Henderson, C.A.; Gomez, C.G.; Novak, S.M.; Mi-Mi, L.; Gregorio, C.C. Overview of the Muscle Cytoskeleton. Compr. Physiol. 2017, 7, 891–944. [Google Scholar] [CrossRef]
- Hao, R.; Adoligbe, C.; Jiang, B.; Zhao, X.; Gui, L.; Qu, K.; Wu, S.; Zan, L. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling. PLoS ONE 2015, 10, e0124723. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Carleo, A.; Landi, C.; Prasse, A.; Bergantini, L.; D’Alessandro, M.; Cameli, P.; Janciauskiene, S.; Rottoli, P.; Bini, L.; Bargagli, E. Proteomic characterization of idiopathic pulmonary fibrosis patients: Stable versus acute exacerbation. Monaldi Arch. Chest Dis. 2020, 90, 32362107. [Google Scholar] [CrossRef]
- Oakley, B.R.; Kirsch, D.R.; Morris, N.R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 1980, 105, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Poland, J.; Schnölzer, M.; Rabilloud, T. A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 2001, 1, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 2022, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Relaix, F.; Bencze, M.; Borok, M.J.; der Vartanian, A.; Gattazzo, F.; Mademtzoglou, D.; Perez-Diaz, S.; Prola, A.; Reyes-Fernandez, P.C.; Rotini, A.; et al. Perspectives on skeletal muscle stem cells. Nat. Commun. 2021, 12, 692. [Google Scholar] [CrossRef]
- Mirzoev, T.M. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int. J. Mol. Sci. 2020, 21, 7940. [Google Scholar] [CrossRef]
- Blazev, R.; Carl, C.S.; Ng, Y.-K.; Molendijk, J.; Voldstedlund, C.T.; Zhao, Y.; Xiao, D.; Kueh, A.J.; Miotto, P.M.; Haynes, V.R.; et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 2022, 34, 1561–1577.e9. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Jiang, S.; Gao, Y.; Qian, A. The role of protein glycosylation in muscle diseases. Mol. Biol. Rep. 2022, 49, 8037–8049. [Google Scholar] [CrossRef]
- Karpicheva, O. Molecular Research on Muscle Protein and Myopathies. Int. J. Mol. Sci. 2022, 23, 7098. [Google Scholar] [CrossRef]
- Ahlf, D.R.; Thomas, P.M.; Kelleher, N.L. Developing Top Down Proteomics to Maximize Proteome and Sequence Coverage from Cells and Tissues. Curr. Opin. Chem. Biol. 2013, 17, 787–794. [Google Scholar] [CrossRef]
- Lee, A.; Tang, S.K.Y.; Mace, C.R.; Whitesides, G.M. Denaturation of proteins by SDS and tetraalkylammonium dodecyl sulfates. Langmuir 2011, 27, 11560–11574. [Google Scholar] [CrossRef]
- Doellinger, J.; Schneider, A.; Hoeller, M.; Lasch, P. Sample Preparation by Easy Extraction and Digestion (SPEED)—A Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid Extraction. Mol. Cell Proteom. 2020, 19, 209–222. [Google Scholar] [CrossRef]
- Valente, K.N.; Choe, L.H.; Lenhoff, A.M.; Lee, K.H. Optimization of protein sample preparation for two-dimensional electrophoresis. Electrophoresis 2012, 33, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Crowell, A.M.J.; Wall, M.J.; Doucette, A.A. Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta 2013, 796, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Carson, V.J.; Feng, H.-Z.; Lawlor, M.W.; Gray, J.T.; Brigatti, K.W.; Jin, J.-P.; Strauss, K.A. TNNT1 nemaline myopathy: Natural history and therapeutic frontier. Hum. Mol. Genet. 2018, 27, 3272–3282. [Google Scholar] [CrossRef]
- López-Martínez, A.; Soblechero-Martín, P.; de-la-Puente-Ovejero, L.; Nogales-Gadea, G.; Arechavala-Gomeza, V. An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes 2020, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Vihola, A.; Bachinski, L.L.; Sirito, M.; Olufemi, S.-E.; Hajibashi, S.; Baggerly, K.A.; Raheem, O.; Haapasalo, H.; Suominen, T.; Holmlund-Hampf, J.; et al. Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol. 2010, 119, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Ochala, J.; Sun, Y.-B. Novel myosin-based therapies for congenital cardiac and skeletal myopathies. J. Med. Genet. 2016, 53, 651–654. [Google Scholar] [CrossRef]
- Marston, S. The Molecular Mechanisms of Mutations in Actin and Myosin that Cause Inherited Myopathy. Int. J. Mol. Sci. 2018, 19, 2020. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes. Diabetes Care 2009, 32, S157–S163. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef]
- Zhang, T.; Birbrair, A.; Wang, Z.-M.; Taylor, J.; Messi, M.L.; Delbono, O. Troponin T nuclear localization and its role in aging skeletal muscle. Age 2013, 35, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Angelini, C.; Semplicini, C. Metabolic myopathies: The challenge of new treatments. Curr. Opin. Pharmacol. 2010, 10, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Ceco, E.; Weinberg, S.E.; Chandel, N.S.; Sznajder, J.I. Metabolism and Skeletal Muscle Homeostasis in Lung Disease. Am. J. Respir. Cell Mol. Biol. 2017, 57, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Batt, J.; Ahmed, S.S.; Correa, J.; Bain, A.; Granton, J. Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2014, 50, 74–86. [Google Scholar] [CrossRef]
- Frisbee, J.C.; Lewis, M.T.; Wiseman, R.W. Skeletal muscle performance in metabolic disease: Microvascular or mitochondrial limitation or both? Microcirculation 2019, 26, e12517. [Google Scholar] [CrossRef]
- Smith, A.G.; Muscat, G.E.O. Skeletal muscle and nuclear horsmone receptors: Implications for cardiovascular and metabolic disease. Int. J. Biochem. Cell Biol. 2005, 37, 2047–2063. [Google Scholar] [CrossRef]
- Thongboonkerd, V.; Mcleish, K.R.; Arthur, J.M.; Klein, J.B. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 2002, 62, 1461–1469. [Google Scholar] [CrossRef]
Method A (µg/µL) | Method B (µg/µL) | |
---|---|---|
Sample 1 | 10.5 | 26.8 |
Sample 2 | 8.7 | 16.3 |
Sample 3 | 7.05 | 22.5 |
Pearson’s Correlation Matrix (r) | |||||||
---|---|---|---|---|---|---|---|
Extraction Method A | Extraction Method B | ||||||
Gels | Sample 1 | Sample 2 | Sample 3 | Gels | Sample 1 | Sample 2 | Sample 3 |
Sample 1 | 1 | 0.935 | 0.93 | Sample 1 | 1 | 0.97 | 0.965 |
Sample 2 | 0.935 | 1 | 0.941 | Sample 2 | 0.97 | 1 | 0.971 |
Sample 3 | 0.93 | 0.941 | 1 | Sample 3 | 0.965 | 0.971 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vantaggiato, L.; Landi, C.; Shaba, E.; Rossi, D.; Sorrentino, V.; Bini, L. Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis. Proteomes 2024, 12, 27. https://doi.org/10.3390/proteomes12040027
Vantaggiato L, Landi C, Shaba E, Rossi D, Sorrentino V, Bini L. Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis. Proteomes. 2024; 12(4):27. https://doi.org/10.3390/proteomes12040027
Chicago/Turabian StyleVantaggiato, Lorenza, Claudia Landi, Enxhi Shaba, Daniela Rossi, Vincenzo Sorrentino, and Luca Bini. 2024. "Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis" Proteomes 12, no. 4: 27. https://doi.org/10.3390/proteomes12040027
APA StyleVantaggiato, L., Landi, C., Shaba, E., Rossi, D., Sorrentino, V., & Bini, L. (2024). Protein Extraction Methods Suitable for Muscle Tissue Proteomic Analysis. Proteomes, 12(4), 27. https://doi.org/10.3390/proteomes12040027