Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Protein Extraction, Trypsin Digestion, and MS Analysis
2.3. Proteogenomic Analysis
2.4. Validation of PTMs
2.5. Bioinformatics Analysis
3. Results
3.1. Overview of the Proteomic Analysis
3.2. Comparative Analysis of Transcriptome and Proteome Data
3.3. Identification of Novel Proteoforms Originated from Novel Genes, Alternative Splicing Events, and Single Amino Acid Variants (SAAVs)
3.4. Structure and Function Analysis of Novel Proteoforms and Their Corresponding Genes
3.5. Discovery of Protein Post-Translational Modification in Lotus Floral Organs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ming, R.; VanBuren, R.; Liu, Y.; Yang, M.; Han, Y.; Li, L.-T.; Zhang, Q.; Kim, M.-J.; Schatz, M.C.; Campbell, M. Genome of the Long-Living Sacred Lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013, 14, R41. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-C.; Das, D.; Zhang, Y.; Chen, M.-X.; Fernie, A.R.; Zhu, F.-Y.; Han, J. Proteogenomics-Based Functional Genome Research: Approaches, Applications, and Perspectives in Plants. Trends Biotechnol. 2023, 41, 1532–1548. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, X.; Shi, Z.; Tao, S.; Liu, Z.; Qi, K.; Xie, Z.; Qiao, X.; Gu, C.; Yin, H.; et al. A Large-Scale Proteogenomic Atlas of Pear. Mol. Plant 2023, 16, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.; Richter, S.; Shikata, H.; Messerer, M.; et al. Mass-Spectrometry-Based Draft of the Arabidopsis Proteome. Nature 2020, 579, 409–414. [Google Scholar] [CrossRef]
- Jenkins, C.; Orsburn, B. The Cannabis Proteome Draft Map Project. Int. J. Mol. Sci. 2020, 21, 965. [Google Scholar] [CrossRef]
- Han, L.; Zhong, W.; Qian, J.; Jin, M.; Tian, P.; Zhu, W.; Zhang, H.; Sun, Y.; Feng, J.-W.; Liu, X.; et al. A Multi-Omics Integrative Network Map of Maize. Nat. Genet. 2023, 55, 144–153. [Google Scholar] [CrossRef]
- Li, S.-T.; Ke, Y.; Zhu, Y.; Zhu, T.-Y.; Huang, H.; Li, L.; Hou, Z.; Zhang, X.; Li, Y.; Liu, C.; et al. Mass Spectrometry-Based Proteomic Landscape of Rice Reveals a Post-Transcriptional Regulatory Role of N6-Methyladenosine. Nat. Plants 2024, 10, 1201–1214. [Google Scholar] [CrossRef]
- Marx, H.; Minogue, C.E.; Jayaraman, D.; Richards, A.L.; Kwiecien, N.W.; Siahpirani, A.F.; Rajasekar, S.; Maeda, J.; Garcia, K.; Del Valle-Echevarria, A.R. A Proteomic Atlas of the Legume Medicago Truncatula and Its Nitrogen-Fixing Endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 2016, 34, 1198–1205. [Google Scholar] [CrossRef]
- Xanthopoulou, A.; Moysiadis, T.; Bazakos, C.; Karagiannis, E.; Karamichali, I.; Stamatakis, G.; Samiotaki, M.; Manioudaki, M.; Michailidis, M.; Madesis, P.; et al. The Perennial Fruit Tree Proteogenomics Atlas: A Spatial Map of the Sweet Cherry Proteome and Transcriptome. Plant J. 2022, 109, 1319–1336. [Google Scholar] [CrossRef]
- Duncan, O.; Trösch, J.; Fenske, R.; Taylor, N.L.; Millar, A.H. Resource: Mapping the Triticum aestivum Proteome. Plant J. 2017, 89, 601–616. [Google Scholar] [CrossRef]
- Deng, J.; Fu, Z.; Chen, S.; Damaris, R.N.; Wang, K.; Li, T.; Yang, P. Proteomic and Epigenetic Analyses of Lotus (Nelumbo nucifera) Petals between Red and White Cultivars. Plant Cell Physiol. 2015, 56, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized Ppb-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- May, D.H.; Tamura, K.; Noble, W.S. Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings. J. Proteome Res. 2017, 16, 1817–1824. [Google Scholar] [CrossRef]
- Kim, S.; Pevzner, P.A. MS-GF+ Makes Progress towards a Universal Database Search Tool for Proteomics. Nat. Commun. 2014, 5, 5277. [Google Scholar] [CrossRef]
- Brosch, M.; Swamy, S.; Hubbard, T.; Choudhary, J. Comparison of Mascot and X!Tandem Performance for Low and High Accuracy Mass Spectrometry and the Development of an Adjusted Mascot Threshold. Mol. Cell. Proteomics 2008, 7, 962–970. [Google Scholar] [CrossRef]
- Yang, M.; Lin, X.; Liu, X.; Zhang, J.; Ge, F. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. Mol. Plant 2018, 11, 1292–1307. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, M.; Zeng, H.; Ge, F. GAPP: A Proteogenomic Software for Genome Annotation and Global Profiling of Post-Translational Modifications in Prokaryotes. Mol. Cell. Proteomics 2016, 15, 3529–3539. [Google Scholar] [CrossRef]
- Na, S.; Bandeira, N.; Paek, E. Fast Multi-Blind Modification Search through Tandem Mass Spectrometry. Mol. Cell. Proteom. 2012, 11, M111.010199. [Google Scholar] [CrossRef]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-Throughput Functional Annotation and Data Mining with the Blast2GO Suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J. eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Sønderby, C.K.; Sønderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Lin, Z.; Cao, D.; Damaris, R.N.; Yang, P. Comparative Transcriptomic Analysis Provides Insight into Carpel Petaloidy in Lotus (Nelumbo nucifera). PeerJ 2021, 9, e12322. [Google Scholar] [CrossRef]
- Nock, C.J.; Baten, A.; Barkla, B.J.; Furtado, A.; Henry, R.J.; King, G.J. Genome and Transcriptome Sequencing Characterises the Gene Space of Macadamia integrifolia (Proteaceae). BMC Genom. 2016, 17, 937. [Google Scholar] [CrossRef]
- Povilus, R.A.; DaCosta, J.M.; Grassa, C.; Satyaki, P.R.; Moeglein, M.; Jaenisch, J.; Xi, Z.; Mathews, S.; Gehring, M.; Davis, C.C. Water Lily (Nymphaea thermarum) Genome Reveals Variable Genomic Signatures of Ancient Vascular Cambium Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 8649–8656. [Google Scholar] [CrossRef]
- Abd-Hamid, N.-A.; Ahmad-Fauzi, M.-I.; Zainal, Z.; Ismail, I. Diverse and Dynamic Roles of F-Box Proteins in Plant Biology. Planta 2020, 251, 68. [Google Scholar] [CrossRef]
- Jääskeläinen, M.; Chang, W.; Moisy, C.; Schulman, A.H. Retrotransposon BARE Displays Strong Tissue-specific Differences in Expression. New Phytol. 2013, 200, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Canales Sanchez, L.E.; Bordeleau, S.J.; Goring, D.R. Arabidopsis Leucine-Rich Repeat Malectin Receptor–like Kinases Regulate Pollen–Stigma Interactions. Plant Physiol. 2024, 195, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Betsuyaku, S.; Osakabe, Y.; Mizuno, S.; Nagawa, S.; Stahl, Y.; Simon, R.; Yamaguchi-Shinozaki, K.; Fukuda, H.; Sawa, S. RPK2 Is an Essential Receptor-like Kinase That Transmits the CLV3 Signal in Arabidopsis. Development 2010, 137, 3911–3920. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, S.S.; Kohler, A.; Yan, B.; Luo, H.M.; Chen, X.M.; Guo, S.X. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium Officinale Seeds (Orchidaceae). J. Proteome Res. 2017, 16, 2174–2187. [Google Scholar] [CrossRef]
- Li, J.; Ren, L.; Gao, Z.; Jiang, M.; Liu, Y.; Zhou, L.; He, Y.; Chen, H. Combined Transcriptomic and Proteomic Analysis Constructs a New Model for Light-induced Anthocyanin Biosynthesis in Eggplant (Solanum melongena L.). Plant Cell Environ. 2017, 40, 3069–3087. [Google Scholar] [CrossRef]
- Moro, C.F.; Fukao, Y.; Shibato, J.; Rakwal, R.; Timperio, A.M.; Zolla, L.; Agrawal, G.K.; Shioda, S.; Kouzuma, Y.; Yonekura, M. Unraveling the Seed Endosperm Proteome of the Lotus (Nelumbo nucifera Gaertn.) Utilizing 1DE and 2DE Separation in Conjunction with Tandem Mass Spectrometry. Proteomics 2015, 15, 1717–1735. [Google Scholar] [CrossRef]
- He, D.; Rao, X.; Deng, J.; Damaris, R.N.; Yang, P. Integration of Metabolomics and Transcriptomics Analyses Investigates the Accumulation of Secondary Metabolites in Maturing Seed Plumule of Sacred Lotus (Nelumbo nucifera). Food Res. Int. 2023, 163, 112172. [Google Scholar] [CrossRef]
- Chu, P.; Chen, H.; Zhou, Y.; Li, Y.; Ding, Y.; Jiang, L.; Tsang, E.W.T.; Wu, K.; Huang, S. Proteomic and Functional Analyses of Nelumbo nucifera Annexins Involved in Seed Thermotolerance and Germination Vigor. Planta 2012, 235, 1271–1288. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Sheng, J.; Lv, S.; Ren, L. TMT-Based Quantitative Proteomic Analysis Reveals the Physiological Regulatory Networks of Embryo Dehydration Protection in Lotus (Nelumbo nucifera). Front. Plant Sci. 2021, 12, 792057. [Google Scholar] [CrossRef]
- He, D.; Cai, M.; Liu, M.; Yang, P. TMT-Based Quantitative Proteomic and Physiological Analyses on Lotus Plumule of Artificially Aged Seed in Long-Living Sacred Lotus Nelumbo nucifera. J. Proteom. 2023, 270, 104736. [Google Scholar] [CrossRef]
- Yu, Y.-P.; Lai, S.-J.; Chang, C.-R.; Chen, W.-C.; Wu, S.-H.; Lu, C.-P. Peptidomic Analysis of Low Molecular Weight Antioxidative Peptides Prepared by Lotus (Nelumbo nucifera Gaertn.) Seed Protein Hydrolysates. LWT 2021, 144, 111138. [Google Scholar] [CrossRef]
- Cao, D.; Damaris, R.N.; Zhang, Y.; Liu, M.; Li, M.; Yang, P. Proteomic Analysis Showing the Signaling Pathways Involved in the Rhizome Enlargement Process in Nelumbo nucifera. BMC Genom. 2019, 20, 766. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zou, Y.; Jin, J.; Chen, H.; Liu, Z.; Zi, Q.; Xiong, Z.; Wang, Y.; Li, Q.; Peng, J. DIA-Based Quantitative Proteomics Reveals the Protein Regulatory Networks of Floral Thermogenesis in Nelumbo nucifera. Int. J. Mol. Sci. 2021, 22, 8251. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Su, M.; Zhang, X.; Liu, X.; Damaris, R.N.; Lv, S.; Yang, P. Proteomic and Metabolomic Analyses Showing the Differentially Accumulation of NnUFGT2 Is Involved in the Petal Red-White Bicolor Pigmentation in Lotus (Nelumbo nucifera). Plant Physiol. Biochem. 2023, 198, 107675. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, G.; Liu, T.; Xu, Z.; Zhang, D. Comparative Transcriptomic and Proteomic Profiling Reveals Molecular Models of Light Signal Regulation of Shade Tolerance in Bowl Lotus (Nelumbo nucifera). J. Proteom. 2022, 257, 104455. [Google Scholar] [CrossRef]
- Lai, C.-P.; Lee, C.-L.; Chen, P.-H.; Wu, S.-H.; Yang, C.-C.; Shaw, J.-F. Molecular Analyses of the Arabidopsis TUBBY-Like Protein Gene Family. Plant Physiol. 2004, 134, 1586–1597. [Google Scholar] [CrossRef]
- Reitz, M.U.; Bissue, J.K.; Zocher, K.; Attard, A.; Hückelhoven, R.; Becker, K.; Imani, J.; Eichmann, R.; Schäfer, P. The Subcellular Localization of Tubby-Like Proteins and Participation in Stress Signaling and Root Colonization by the Mutualist Piriformospora Indica. Plant Physiol. 2012, 160, 349–364. [Google Scholar] [CrossRef]
- Gupta, N.; Tanner, S.; Jaitly, N.; Adkins, J.N.; Lipton, M.; Edwards, R.; Romine, M.; Osterman, A.; Bafna, V.; Smith, R.D. Whole Proteome Analysis of Post-Translational Modifications: Applications of Mass-Spectrometry for Proteogenomic Annotation. Genome Res. 2007, 17, 1362–1377. [Google Scholar] [CrossRef]
- Chapman, B.; Bellgard, M. Plant Proteogenomics: Improvements to the Grapevine Genome Annotation. Proteomics 2017, 17, 1700197. [Google Scholar] [CrossRef]
- Chen, M.-X.; Zhu, F.-Y.; Gao, B.; Ma, K.-L.; Zhang, Y.; Fernie, A.R.; Chen, X.; Dai, L.; Ye, N.-H.; Zhang, X. Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiol. 2020, 182, 1510–1526. [Google Scholar] [CrossRef]
- Skodra, C.; Michailidis, M.; Moysiadis, T.; Stamatakis, G.; Ganopoulou, M.; Adamakis, I.-D.S.; Angelis, L.; Ganopoulos, I.; Tanou, G.; Samiotaki, M.; et al. Disclosing the Molecular Basis of Salinity Priming in Olive Trees Using Proteogenomic Model Discovery. Plant Physiol. 2023, 191, 1913–1933. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The pride database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Shu, J.; Qin, Y.; Cao, D.; Deng, J.; Yang, P. Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy. Proteomes 2025, 13, 4. https://doi.org/10.3390/proteomes13010004
Lin Z, Shu J, Qin Y, Cao D, Deng J, Yang P. Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy. Proteomes. 2025; 13(1):4. https://doi.org/10.3390/proteomes13010004
Chicago/Turabian StyleLin, Zhongyuan, Jiantao Shu, Yu Qin, Dingding Cao, Jiao Deng, and Pingfang Yang. 2025. "Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy" Proteomes 13, no. 1: 4. https://doi.org/10.3390/proteomes13010004
APA StyleLin, Z., Shu, J., Qin, Y., Cao, D., Deng, J., & Yang, P. (2025). Identification of Proteoforms Related to Nelumbo nucifera Flower Petaloid Through Proteogenomic Strategy. Proteomes, 13(1), 4. https://doi.org/10.3390/proteomes13010004