Enhancing Biomedicine: Proteomics and Metabolomics in Action
Author Contributions
Funding
Conflicts of Interest
References
- Gonçalves, E.; Poulos, R.C.; Cai, Z.; Barthorpe, S.; Manda, S.S.; Lucas, N.; Beck, A.; Bucio-Noble, D.; Dausmann, M.; Hall, C.; et al. Pan-Cancer Proteomic Map of 949 Human Cell Lines. Cancer Cell 2022, 40, 835–849.e8. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Cevenini, A.; Kollipara, L.; Caterino, M.; Bianco, S.; Pirozzi, F.; Scerra, G.; D’Agostino, M.; Pavone, L.M.; Sickmann, A.; et al. Methylmalonic Acidemia Triggers Lysosomal-Autophagy Dysfunctions. Cell Biosci. 2024, 14, 63. [Google Scholar] [CrossRef]
- Zhu, Z.; Cai, J.; Hou, W.; Xu, K.; Wu, X.; Song, Y.; Bai, C.; Mo, Y.Y.; Zhang, Z. Microbiome and Spatially Resolved Metabolomics Analysis Reveal the Anticancer Role of Gut Akkermansia Muciniphila by Crosstalk with Intratumoral Microbiota and Reprogramming Tumoral Metabolism in Mice. Gut Microbes 2023, 15, 2166700. [Google Scholar] [CrossRef] [PubMed]
- Santorelli, L.; Costanzo, M.; Petrosino, S.; Santoro, M.; Caterino, M.; Ruoppolo, M.; Grumati, P. Cross-Linking Mass Spectrometry to Capture Protein Network Dynamics of Cell Membranome. In Tissue Proteomics: Methods and Protocols; Islam Williams, T., Ed.; Springer: New York, NY, USA, 2025; pp. 241–258. ISBN 978-1-0716-4298-6. [Google Scholar]
- Raimondo, F.; Pitto, M. Prognostic Significance of Proteomics and Multi-Omics Studies in Renal Carcinoma. Expert Rev. Proteom. 2020, 17, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, I.I.; Lineva, V.I.; Tarasova, I.A.; Gorshkov, M.V. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. Biochemistry 2022, 87, 983–994. [Google Scholar] [CrossRef]
- Garana, B.B.; Graham, N.A. Metabolomics Paves the Way for Improved Drug Target Identification. Mol. Syst. Biol. 2022, 18, e10914. [Google Scholar] [CrossRef]
- Anurag, M.; Jaehnig, E.J.; Krug, K.; Lei, J.T.; Bergstrom, E.J.; Kim, B.J.; Vashist, T.D.; Huynh, A.M.T.; Dou, Y.; Gou, X.; et al. Proteogenomic Markers of Chemotherapy Resistance and Response in Triple-Negative Breast Cancer. Cancer Discov. 2022, 12, 2586–2605. [Google Scholar] [CrossRef]
- Wang, L.B.; Karpova, A.; Gritsenko, M.A.; Kyle, J.E.; Cao, S.; Li, Y.; Rykunov, D.; Colaprico, A.; Rothstein, J.H.; Hong, R.; et al. Proteogenomic and Metabolomic Characterization of Human Glioblastoma. Cancer Cell 2021, 39, 509–528.e20. [Google Scholar] [CrossRef]
- Christians, U.; Klawitter, J.; Klawitter, J. Biomarkers in Transplantation-Proteomics and Metabolomics. Ther. Drug Monit. 2016, 38, S70–S74. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Malvagia, S.; Boenzi, S.; Carducci, C.; Dionisi-Vici, C.; Teofoli, F.; Burlina, A.; Angeloni, A.; Aronica, T.; Bordugo, A.; et al. Expanded Newborn Screening in Italy Using Tandem Mass Spectrometry: Two Years of National Experience. Int. J. Neonatal Screen 2022, 8, 47. [Google Scholar] [CrossRef]
- Costanzo, M.; Caterino, M. Targeted Lipidomics Data of COVID-19 Patients. Data Brief 2023, 48, 109089. [Google Scholar] [CrossRef] [PubMed]
- Nayor, M.; Brown, K.J.; Vasan, R.S. The Molecular Basis of Predicting Atherosclerotic Cardiovascular Disease Risk. Circ. Res. 2021, 128, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Liu, J.; Cao, S.; Imbach, K.J.; Gritsenko, M.A.; Lih, T.S.M.; Kyle, J.E.; Yaron-Barir, T.M.; Binder, Z.A.; Li, Y.; Strunilin, I.; et al. Multi-Scale Signaling and Tumor Evolution in High-Grade Gliomas. Cancer Cell 2024, 42, 1217–1238.e19. [Google Scholar] [CrossRef]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine Learning for Multi-Omics Data Integration in Cancer. Iscience 2022, 25, 103798. [Google Scholar] [CrossRef]
- Pammi, M.; Aghaeepour, N.; Neu, J. Multiomics, Artificial Intelligence, and Precision Medicine in Perinatology. Pediatr. Res. 2023, 93, 308–315. [Google Scholar] [CrossRef]
- Zhou, Y.; Geng, P.; Zhang, S.; Xiao, F.; Cai, G.; Chen, L.; Lu, Q. Multimodal Functional Deep Learning for Multiomics Data. Brief Bioinform. 2024, 25, bbae448. [Google Scholar] [CrossRef]
- Palshikar, M.G.; Min, X.; Crystal, A.; Meng, J.; Hilchey, S.P.; Zand, M.S.; Thakar, J. Executable Network Models of Integrated Multiomics Data. J. Proteome Res. 2023, 22, 1546–1556. [Google Scholar] [CrossRef]
- Sun, F.; Li, H.; Sun, D.; Fu, S.; Gu, L.; Shao, X.; Wang, Q.; Dong, X.; Duan, B.; Xing, F.; et al. Single-Cell Omics: Experimental Workflow, Data Analyses and Applications. Sci. China Life Sci. 2024, 68, 5–102. [Google Scholar]
- Sun, C.; Wang, A.; Zhou, Y.; Chen, P.; Wang, X.; Huang, J.; Gao, J.; Wang, X.; Shu, L.; Lu, J.; et al. Spatially Resolved Multi-Omics Highlights Cell-Specific Metabolic Remodeling and Interactions in Gastric Cancer. Nat. Commun. 2023, 14, 2692. [Google Scholar] [CrossRef]
- Tao, Y.; Xing, S.; Zuo, S.; Bao, P.; Jin, Y.; Li, Y.; Li, M.; Wu, Y.; Chen, S.; Wang, X.; et al. Cell-Free Multi-Omics Analysis Reveals Potential Biomarkers in Gastrointestinal Cancer Patients’ Blood. Cell Rep. Med. 2023, 4, 101281. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, A.; Santorelli, L.; Costanzo, M. COVIDomics: Metabolomic Views on COVID-19. Metabolites 2024, 14, 702. [Google Scholar] [CrossRef]
- Reveglia, P.; Paolillo, C.; Angiolillo, A.; Ferretti, G.; Angelico, R.; Sirabella, R.; Corso, G.; Matrone, C.; Di Costanzo, A. A Targeted Mass Spectrometry Approach to Identify Peripheral Changes in Metabolic Pathways of Patients with Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 9736. [Google Scholar] [CrossRef] [PubMed]
- Karnati, S.; Guntas, G.; Rajendran, R.; Shityakov, S.; Höring, M.; Liebisch, G.; Kosanovic, D.; Ergün, S.; Nagai, M.; Förster, C.Y. Quantitative Lipidomic Analysis of Takotsubo Syndrome Patients’ Serum. Front. Cardiovasc. Med. 2022, 9, 7154. [Google Scholar] [CrossRef] [PubMed]
- Forgrave, L.M.; Wang, M.; Yang, D.; DeMarco, M.L. Proteoforms and Their Expanding Role in Laboratory Medicine. Pract. Lab. Med. 2022, 28, e00260. [Google Scholar] [CrossRef]
- Santorelli, L.; Caterino, M.; Costanzo, M. Proteomics and Metabolomics in Biomedicine. Int. J. Mol. Sci. 2023, 24, 16913. [Google Scholar] [CrossRef]
- Sartore, G.; Piarulli, F.; Ragazzi, E.; Mallia, A.; Ghilardi, S.; Carollo, M.; Lapolla, A.; Banfi, C. Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes. Proteomes 2024, 12, 29. [Google Scholar] [CrossRef]
- Songjang, W.; Paiyabhroma, N.; Jumroon, N.; Jiraviriyakul, A.; Nernpermpisooth, N.; Seenak, P.; Kumphune, S.; Thaisakun, S.; Phaonakrop, N.; Roytrakul, S.; et al. Proteomic Profiling of Early Secreted Proteins in Response to Lipopolysaccharide-Induced Vascular Endothelial Cell EA.Hy926 Injury. Biomedicines 2023, 11, 3065. [Google Scholar] [CrossRef]
- Rusi, E.; Pennacchia, F.; Ruqa, W.A.; Talarico, G.; Bruno, G.; Minni, A.; Barbato, C. Proteoform Analysis of the Human Olfactory System: A Window into Neurodegenerative Diseases. Proteomes 2024, 12, 9. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Xu, G.; Huang, R.; Wumaier, R.; Lyu, J.; Huang, M.; Zhang, Y.; Chen, Q.; Liu, W.; Tao, M.; Li, J.; et al. Proteomic Profiling of Serum Extracellular Vesicles Identifies Diagnostic Signatures and Therapeutic Targets in Breast Cancer. Cancer Res. 2024, 84, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Zhang, Y.; Xiao, L.; Xie, C.; Samora, N.L.; Niknafs, Y.S.; Chopra, Z.; Siddiqui, J.; Zheng, H.; Herron, G.; et al. Development and Validation of an 18-Gene Urine Test for High-Grade Prostate Cancer. JAMA Oncol. 2024, 10, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Bertran, L.; Capellades, J.; Abelló, S.; Durán-Bertran, J.; Aguilar, C.; Martinez, S.; Sabench, F.; Correig, X.; Yanes, O.; Auguet, T.; et al. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int. J. Mol. Sci. 2023, 24, 9789. [Google Scholar] [CrossRef] [PubMed]
- Filipović, D.; Inderhees, J.; Korda, A.; Tadić, P.; Schwaninger, M.; Inta, D.; Borgwardt, S. Metabolic Fingerprints of Effective Fluoxetine Treatment in the Prefrontal Cortex of Chronically Socially Isolated Rats: Marker Candidates and Predictive Metabolites. Int. J. Mol. Sci. 2023, 24, 957. [Google Scholar] [CrossRef]
- Shao, L.; Yue, F.; Fan, J.; Su, Q.; Liu, H.; Zhang, Q.; Xu, L. Comparative Proteomics and Metabonomics Analysis of Different Diapause Stages Revealed a New Regulation Mechanism of Diapause in Loxostege sticticalis (Lepidoptera: Pyralidae). Molecules 2024, 29, 3472. [Google Scholar] [CrossRef]
- Keusch, G.T.; Amuasi, J.H.; Anderson, D.E.; Daszak, P.; Eckerle, I.; Field, H.; Koopmans, M.; Lam, S.K.; Das Neves, C.G.; Peiris, M.; et al. Pandemic Origins and a One Health Approach to Preparedness and Prevention: Solutions Based on SARS-CoV-2 and Other RNA Viruses-Uted Under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Proc. Natl. Acad. Sci. USA 2022, 119, e2202871119. [Google Scholar] [CrossRef]
- Procopio, A.C.; Colletta, S.; Laratta, E.; Mellace, M.; Tilocca, B.; Ceniti, C.; Urbani, A.; Roncada, P. Integrated One Health Strategies in Dengue. One Health 2024, 18, 100684. [Google Scholar] [CrossRef]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of Antibiotic Resistance Genes in the Environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
- Kim, B.; Kim, G.; Jeon, H.P.; Jung, J. Lipidomics Analysis Unravels Aberrant Lipid Species and Pathways Induced by Zinc Oxide Nanoparticles in Kidney Cells. Int. J. Mol. Sci. 2024, 25, 4285. [Google Scholar] [CrossRef]
- Song, L.; Liang, Y.; Li, Y.; Guo, T.; Li, H.; Liang, S. Development of an LC–TOF/MS Method to Quantify Camrelizumab in Human Serum. Molecules 2024, 29, 4862. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanzo, M.; Caterino, M.; Santorelli, L. Enhancing Biomedicine: Proteomics and Metabolomics in Action. Proteomes 2025, 13, 5. https://doi.org/10.3390/proteomes13010005
Costanzo M, Caterino M, Santorelli L. Enhancing Biomedicine: Proteomics and Metabolomics in Action. Proteomes. 2025; 13(1):5. https://doi.org/10.3390/proteomes13010005
Chicago/Turabian StyleCostanzo, Michele, Marianna Caterino, and Lucia Santorelli. 2025. "Enhancing Biomedicine: Proteomics and Metabolomics in Action" Proteomes 13, no. 1: 5. https://doi.org/10.3390/proteomes13010005
APA StyleCostanzo, M., Caterino, M., & Santorelli, L. (2025). Enhancing Biomedicine: Proteomics and Metabolomics in Action. Proteomes, 13(1), 5. https://doi.org/10.3390/proteomes13010005