Dynamic Modeling and Simulation of Urban Domestic Water Supply Inputs Based on VES Production Function
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Sources
3. Model
3.1. Water Demand Subsystem
3.1.1. Gompertz Population Function
3.1.2. Per Capita Disposable Income Function
3.1.3. Annual Growth Rate Function of Domestic Water Demand
3.1.4. Water-Saving Consciousness Function
3.1.5. Water Demand Function
3.2. Depreciation Method
3.2.1. Straight-Line Depreciation Method
3.2.2. Sum of Years Digits Method
3.3. Water Supply Subsystem
4. Dynamic Supply and Demand Model of Domestic Water System
4.1. Historical Test
4.2. Sensitivity Analysis
4.3. Simulation
4.4. Scenario Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.G.; Yin, L. Models of Water Strategy Based on Linear Regression. Adv. Mater. Res. 2014, 955–959, 3355–3360. [Google Scholar] [CrossRef]
- Perea, R.G.; Poyato, E.C.; Montesinos, P.; Díaz, J.A.R. Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosyst. Eng. 2019, 177, 59–66. [Google Scholar] [CrossRef]
- Yin, Z.; Jia, B.; Wu, S.; Dai, J.; Tang, D. Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model. Water 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Sha, J.; Liu, B.; Tian, W.; Lu, J. An Ameliorative Whale Optimization Algorithm for Multi-Objective Optimal Allocation of Water Resources in Handan, China. Water 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.J.; Steffen, J.L.; Cheung, P. Parameter Estimation of Seasonal Arima Models for Water Demand Forecasting Using the Harmony Search Algorithm. Procedia Eng. 2017, 186, 177–185. [Google Scholar] [CrossRef]
- Wu, S.; Han, H.; Hou, B.; Diao, K. Hybrid Model for Short-Term Water Demand Forecasting Based on Error Correction Using Chaotic Time Series. Water 2020, 12, 1683. [Google Scholar] [CrossRef]
- Plucinski, B.; Sun, Y.; Wang, S.-Y.S.; Gillies, R.R.; Eklund, J.; Wang, C.-C. Feasibility of Multi-Year Forecast for the Colorado River Water Supply: Time Series Modeling. Water 2019, 11, 2433. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chang, M. Application of the grey theory and the neural network in water demand forecast. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 2, pp. 1070–1073. [Google Scholar]
- Vishnu, B.; Syamala, P. Grey Model for Stream Flow Prediction. Aceh Int. J. Sci. Technol. 2012, 1, 14–19. [Google Scholar]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci. Total Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yao, L.; Chen, X. Urban water supply system optimization and planning: Bi-objective optimization and system dynamics methods. Comput. Ind. Eng. 2020, 142, 106373.1–106373.13. [Google Scholar] [CrossRef]
- Winz, I.; Brierley, G.; Trowsdale, S. The Use of System Dynamics Simulation in Water Resources Management. Water Resour. Manag. 2009, 23, 1301–1323. [Google Scholar] [CrossRef]
- Huang, A.; Chang, F.-J. Prospects for Rooftop Farming System Dynamics: An Action to Stimulate Water-Energy-Food Nexus Synergies toward Green Cities of Tomorrow. Sustainability 2021, 13, 9042. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, X.; Chen, Y.; Fang, D. Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics. Water Resour. Manag. 2019, 33, 2093–2108. [Google Scholar] [CrossRef]
- Jia, B.; Zhou, J.; Zhang, Y.; Tian, M.; He, Z.; Ding, X. System dynamics model for the coevolution of coupled water supply–power generation–environment systems: Upper Yangtze river Basin, China. J. Hydrol. 2021, 593, 125892. [Google Scholar] [CrossRef]
- Li, K.B. Dynamic Optimization and Simulation of Urban Domestic Water Based on Logistic and C-D Function. J. Shanghai Jiaotong Univ. 2015, 49, 178–183. [Google Scholar]
- Souza, G.D.S.E.; De Faria, R.C.; Moreira, T.B.S. Efficiency of Brazilian public and private water utilities. Estud. Econômicos São Paulo 2008, 38, 905–917. [Google Scholar] [CrossRef]
- Li, K.B.; Ma, T.Y.; Dooling, T.; Wei, G. Urban Comprehensive Water Consumption: Nonlinear Control of Production Factor Input Based upon the C-D Function. Sustainability 2019, 11, 1125. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.L.; Zhong-Yi, K.E.; Ding, X.T. Prediction of Water Shortage Quantity of China Based on Cobb-Douglas Production Function. Water Sav. Irrig. 2014, 9, 923. [Google Scholar]
- Li, K.B.; Ma, T.Y.; Wei, G.; Zhang, Y.Q.; Feng, X.Y. Urban Industrial Water Supply and Demand: System Dynamic Model and Simulation Based on Cobb–Douglas Function. Sustainability 2019, 11, 5893. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yue, Q.; Guo, P.; Pan, Q.; Guo, S. Sustainable regional water allocation under water-energy nexus: A chance-constrained possibilistic mean-variance multi-objective programming. J. Clean. Prod. 2021, 313, 127934. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, B. Application of an extended VES production function model based on improved PSO algorithm. Soft Comput. 2021, 25, 7937–7945. [Google Scholar] [CrossRef]
- Cui, H.S.; Deng, Y.Q. Factors influencing residential water consumption. Water Resour. Prot. 2009, 25, 83–85. [Google Scholar]
- Lakshminarayanan, E.S.; Pitchaimani, M. Existence of Gompertz parameters and its asymptotic formulae for a large population. Appl. Math. Lett. 2004, 17, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Yi, B.; Chen, L.; Lu, L.Q.; Qin, Y.H.P. Domestic Water Demand Prediction of the Upper and Middle Pearl River Basin Based on System Dynamics Method Consivaning Social-hydrological Multi-factor. China Rural. Water Hydropower 2020, 11, 35–41. [Google Scholar]
- Feng, L.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Dynamic forecasting of agricultural water footprint based on Markov Chain-a case study of the Heihe River Basin. Ecol. Model. 2016, 353, 150–157. [Google Scholar] [CrossRef]
- Guo, H.C.; Liu, L.; Huang, G.H.; Fuller, G.A.; Zou, R.; Yin, Y.Y. A system dynamics approach for regional environmental planning and management: A study for the Lake Erhai Basin. J. Environ. Manag. 2001, 61, 93–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Xu, J.M. Forecast of Jiangsu’s population change trend after the implementation of the universal two-child policy. Stat. Manag. 2019, 9, 3–8. [Google Scholar]
Time (Year) | Resident Population | Per Capita Disposable Income (Yuan) | Fixed Capital | Labor Force |
---|---|---|---|---|
2005 | 7588.24 | 8712.20 | 10.8363 | 0.1350 |
2006 | 7655.66 | 9790.51 | 13.5876 | 0.1373 |
2007 | 7723.13 | 10,922.30 | 14.7201 | 0.1450 |
2008 | 7762.48 | 11,851.52 | 16.8281 | 0.1507 |
2009 | 7810.27 | 13,171.82 | 20.5288 | 0.1688 |
2010 | 7869.34 | 14,780.98 | 23.1173 | 0.1816 |
2011 | 7898.80 | 16,383.77 | 24.8845 | 0.1602 |
2012 | 7919.98 | 18,147.30 | 27.0982 | 0.1741 |
2013 | 7939.49 | 19,668.84 | 35.3195 | 0.2071 |
2014 | 7960.06 | 21,161.48 | 39.9850 | 0.2197 |
2015 | 7976.30 | 22,744.75 | 44.6090 | 0.2368 |
2016 | 7998.60 | 24,225.92 | 43.0127 | 0.2482 |
2017 | 8029.30 | 26,071.11 | 47.6872 | 0.2633 |
2018 | 8050.70 | 27,759.55 | 49.2170 | 0.2683 |
2019 | 8070.00 | 29,346.03 | 62.3315 | 0.2839 |
Parametric Variable | Year | |||||
---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | ||
Population | people | 7976.30 | 7998.60 | 8029.30 | 8050.70 | 8070.00 |
people | 7979.57 | 8008 | 8035.68 | 8062.63 | 8088.88 | |
0.04 | 0.12 | 0.08 | 0.15 | 0.23 | ||
Per Capita Disposable Income | Actual value/Yuan | 22,744.75 | 24,225.92 | 26,071.11 | 27,759.55 | 29,346.03 |
Simulation value/Yuan | 22,840.10 | 24,348.10 | 25,856.20 | 27,364.30 | 28,872.30 | |
0.42 | 0.50 | −0.82 | −1.42 | −1.61 | ||
Water demand | 36.60 | 37.50 | 38.70 | 39.20 | 40.60 | |
38.92 | 39.59 | 40.24 | 40.86 | 41.47 | ||
6.35 | 5.58 | 3.97 | 4.24 | 2.13 | ||
Water supply by straight-line method | 36.60 | 37.50 | 38.70 | 39.20 | 40.60 | |
36.11 | 36.53 | 36.94 | 37.34 | 37.72 | ||
−1.34 | −2.59 | −4.55 | −4.76 | −7.09 | ||
Water supply by the sum of years digits method | 36.60 | 37.50 | 38.70 | 39.20 | 40.60 | |
36.10 | 36.51 | 36.92 | 37.32 | 37.71 | ||
−1.37 | −2.63 | −4.60 | −4.80 | −7.12 |
Parameters | ||
---|---|---|
Straight-Line Depreciation Method | Sum of Years Digits Method | |
Capital formation rate | 0.0719 | 0.0745 |
Labor force formation rate | 0.0282 | 0.0279 |
Labor force abolition rate | 0.0080 | 0.0079 |
Capital residual value rate | 0.0007 | 0.0103 |
Sensitivity Classification | |
---|---|
Insensitive parameter | |
Medium parameter | |
Sensitive parameter | |
High sensitivity parameter |
Time | ||
---|---|---|
2005 | ||
2006–2009 | ||
2010–2015 | ||
2016–2019 | ||
2020–2027 | ||
2028–2034 |
Scenario | Parameter Setting in 2020–2034 |
---|---|
Time | ||||||||
---|---|---|---|---|---|---|---|---|
2020–2027 | ||||||||
2028–2034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Ding, Z. Dynamic Modeling and Simulation of Urban Domestic Water Supply Inputs Based on VES Production Function. Mathematics 2022, 10, 89. https://doi.org/10.3390/math10010089
Li K, Ding Z. Dynamic Modeling and Simulation of Urban Domestic Water Supply Inputs Based on VES Production Function. Mathematics. 2022; 10(1):89. https://doi.org/10.3390/math10010089
Chicago/Turabian StyleLi, Kebai, and Zhilei Ding. 2022. "Dynamic Modeling and Simulation of Urban Domestic Water Supply Inputs Based on VES Production Function" Mathematics 10, no. 1: 89. https://doi.org/10.3390/math10010089
APA StyleLi, K., & Ding, Z. (2022). Dynamic Modeling and Simulation of Urban Domestic Water Supply Inputs Based on VES Production Function. Mathematics, 10(1), 89. https://doi.org/10.3390/math10010089