Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization
Abstract
:1. Introduction
2. Mechanical Analysis
2.1. FCC-Based Definition of the Mass Matrix of an Element Defined by Three Basic Points
2.2. Six-Bar Mechanism
2.3. Counterweight Addition
2.4. Mass Matrix for the Six-Bar Mechanism with Counterweights
2.5. Linear Momentum and Shaking Force
2.6. Angular Momentum and Shaking Moment
3. Optimization
3.1. Objective Function
3.2. Algorithm
Algorithm 1: Differential Evolution (DE). |
4. Results
4.1. Optimization with Five Counterweights
- In the first solution, a greater importance is given to balancing the ShM. This is achieved by choosing the minimum value of index ( = 0. 235917108), which allows us to obtain an improvement of 76.4% without considering any improvement of the ShF ( = 0.932850297). The following variables values correspond to this solution:
- 2.
- The second chosen solution in the Pareto front is the one with the minimum value in ( = 0.270900009), which achieves an improvement of 72.91% in balancing the ShM. This choice assigns no importance to the balancing of the ShM ( = 0.924195224). This solution yields to the following variable values:
- 3.
- The third chosen solution is the one in the Pareto front where both indexes are optimized ( = 0.580111266, = 0.558041831). By using this solution, the ShM is reduced by 41.99% and the ShF is reduced by 44.2%. It corresponds to the following variable values:
4.2. Dimensions of the Counterweights
4.3. Implementation
4.4. Optimization with Four or Less Counterweights
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CC | Cartesian Coordinates |
FCC | Fully Cartesian Coordinates |
ShF | Shaking Force |
ShM | Shaking Moment |
CoM | Center of Mass |
DE | Differential Evolution |
Appendix A. Mass-Matrix for Individual Linkages
Appendix A.1. Mass Matrix for Linkages 1 and 3
Appendix A.2. Mass Matrix for Linkages 2, 4, and 5
References
- Arakelian, V.; Briot, S. Balancing of Linkages and Robot Manipulators. Mechanisms and Machine Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 27. [Google Scholar]
- Uicker, J.J.; Pennock, G.R.; Shigley, J.E. Theory of Machines and Mechanisms, 5th ed.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Waldron, K.J.; Kinzel, G.L. Kinematics, Dynamics, and Design of Machinery, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Arakelian, V.; Dahan, M.; Smith, M.A. Historical review of the evolution of the theory on balancing of mechanisms. In Symposium on History of Machines and Mechanisms Proceedings HMM 2000; Ceccarelli, M., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 291–300. [Google Scholar]
- Arakelian, V. Inertia forces and moments balancing in robot manipulators: A review. Adv. Robot. 2017, 31, 717–726. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, D. A review of dynamic balancing for robotic mechanisms. Robotica 2021, 39, 55–71. [Google Scholar] [CrossRef]
- Fisher, O. Über die reduzierten Systeme und die Hauptpunkte der Glieder eines Gelenkmechanismus und ihre Bedeutung für die technische Mechanik. Z. Für Angew. Math. Und Phys. 1902, 47, 429–466. [Google Scholar]
- Goryachkin, V.P. The forces of inertia and their balancing. In Collection of Scientific Works; Kolos: Moscow, Russia, 1914; pp. 283–418. [Google Scholar]
- Yudin, V. The Balancing of Machines and Their Stability; Edition of Academy of Red Army: Moscow, Russia, 1941; 124p. [Google Scholar]
- Kreutzinger, R. Über die bewegung des Schwerpunktes beim Kurbelgetriebe. Getriebetechnik 1942, 10, 397–398. [Google Scholar]
- Maxwell, R.L. Kinematics and Dynamics of Machinery, 1st ed.; Prentice Hall: Englewood Cliff, NJ, USA, 1960. [Google Scholar]
- Smith, M.R.; Maundert, L. Inertia forces in a four-bar linkage. J. Mech. Eng. Sci. 1967, 9, 218–225. [Google Scholar] [CrossRef]
- Talbourdet, G.L.; Shepler, P.R. Mathematical solution of 4-bar linkages-IV. Balancing of linkages. Mach. Des. 1941, 13, 73–77. [Google Scholar]
- Lanchester, F.W. Engine Balancing. Inst. Automob. Eng. 1914, 8, 195–271. [Google Scholar] [CrossRef]
- Root, R.E. Dynamics of Engine and Shaft; John Wiley: New York, NY, USA, 1932. [Google Scholar]
- Artobolevsky, I.I.; Edelshtein, B.V. Methods of Inertia Calculation for Mechanisms of Agricultural Machines; Selkhozizdate: Moscow, Russia, 1935. [Google Scholar]
- Gheronimus, Y.L. An approximate method of calculating a counterweight for the balancing of vertical inertia forces. Mechanisms 1968, 3, 283–288. [Google Scholar] [CrossRef]
- Doucet, E. Équilibrage dynamique des moteurs en ligne. Tech. Automob. Arienne 1946, 37, 30–31. [Google Scholar]
- Emod, I.; Jurek, A. Massenausgleich am Kurbelgetriebe von Sechszylinder-viertakt-V-motoren mit 6 Kurbeln und 60 Zylinderwinkeln. Period. Polytech. Mech. Eng. 1967, 3–4, 205–211. [Google Scholar]
- Semenov, M.V. The synthesis of partly balanced plane mechanisms. Mechanisms 1968, 3, 339–353. [Google Scholar] [CrossRef]
- Berkof, R.S.; Lowen, G.G. A new method for complete force balancing simple linkages. J. Eng. Ind. 1969, 91B, 21–26. [Google Scholar] [CrossRef]
- Smith, M.R. Dynamic analysis and balancing of linkages with interactive computer graphics. Comput. Aided Des. 1975, 7, 15–19. [Google Scholar] [CrossRef]
- Tepper, F.R.; Lowen, G.G. General theorems concerning full force balancing of planar linkages by internal mass redistribution. J. Eng. Ind. 1972, 94, 789–796. [Google Scholar] [CrossRef]
- Berkof, R.S. Complete force and moment balancing of inline four-bar linkages. Mech. Mach. Theory 1973, 8, 397–410. [Google Scholar] [CrossRef]
- Wiederrich, J.L.; Roth, B. Momentum balancing of four-bar linkages. J. Manuf. Sci. Eng. 1976, 4, 1289–1295. [Google Scholar] [CrossRef]
- Dresig, H.; Jacobi, P. Vollständiger trägheitskraftausgleich von ebenen koppelgetrieben durch anbringen eines zweischlages. Maschinenbautechnik 1974, 23, 5–8. [Google Scholar]
- Feng, G. Complete Shaking Force and Shaking Moment balancing of four types of six-bar linkages. Mech. Mach. Theory 1989, 24, 275–287. [Google Scholar] [CrossRef]
- Kochev, I.S. Active balancing of the frame Shaking Moment in high speed planar machines. Mech. Mach. Theory 1992, 27, 53–58. [Google Scholar] [CrossRef]
- de Jong, J.J.; van Dijk, J.; Herder, J.L. A screw based methodology for instantaneous dynamic balance. Mech. Mach. Theory 2019, 141, 267–282. [Google Scholar] [CrossRef]
- Acevedo, M.; Orvañanos-Guerrero, M.T.; Velázquez, R.; Arakelian, V. An alternative method for Shaking Force balancing of the 3RRR PPM through acceleration control of the center of mass. Appl. Sci. 2020, 10, 1351. [Google Scholar] [CrossRef] [Green Version]
- Meijaard, J.P.; van der Wijk, V. Dynamic balancing of mechanisms with flexible links. Mech. Mach. Theory 2022, 172, 104784. [Google Scholar] [CrossRef]
- Segla, S.; Kalker-Kalman, C.M.; Schwab, A.L. Statical balancing of a robot mechanism with the aid of a genetic algorithm. Mech. Mach. Theory 1998, 33, 163–174. [Google Scholar] [CrossRef]
- Farmani, M.; Jaamialahmadi, A.; Babaie, M. Multiobjective optimization for force and moment balance of a four-bar linkage using evolutionary algorithms. J. Mech. Sci. Technol. 2011, 25, 2971–2977. [Google Scholar] [CrossRef]
- Zamuda, A.; Brest, J.; Boskovic, B.; Zumer, V. Differential evolution for multiobjective optimization with self adaptation. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007. [Google Scholar]
- Erkaya, S. Investigation of balancing problem for a planar mechanism using genetic algorithm. J. Mech. Sci. Technol. 2013, 27, 2153–2160. [Google Scholar] [CrossRef]
- Bošković, M.; Šalinić, S.; Bulatović, R.; Miodragović, G. Multiobjective optimization for dynamic balancing of four-bar mechanism. In Proceedings of the 6th International Congress of Serbian Society of Mechanics, Mountain Tara, Serbia, 19–21 June 2017. [Google Scholar]
- García de Jalón, J. Twenty-five years of natural coordinates. Multibody Syst. Dyn. 2007, 18, 15–33. [Google Scholar] [CrossRef]
- Orvañanos-Guerrero, M.T.; Sánchez, C.N.; Rivera, M.; Acevedo, M.; Velázquez, R. Gradient descent-based optimization method of a four-bar mechanism using Fully Cartesian coordinates. Appl. Sci. 2019, 9, 4115. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, M.; Orvañanos-Guerrero, M.T.; Velázquez, R.; Haro, E. Optimum balancing of the four-bar linkage using Fully Cartesian coordinates. IEEE Lat. Am. Trans. 2019, 17, 983–990. [Google Scholar] [CrossRef]
- Bourbonnais, F.; Bigras, P.; Bonev, I.A. Minimum-time trajectory planning and control of a pick-and-place five-bar parallel robot. IEEE/ASME Trans. Mechatron. 2015, 20, 740–749. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Wu, J.; Ye, H. An experimental study on the dynamics calibration of a 3-DOF parallel tool head. IEEE/ASME Trans. Mechatron. 2019, 24, 2931–2941. [Google Scholar]
- Pennock, G.R.; Israr, A. Kinematic analysis and synthesis of an adjustable six-bar linkage. Mech. Mach. Theory 2009, 44, 306–323. [Google Scholar] [CrossRef]
- García de Jalón, J.; Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge; Springer: New York, NY, USA, 1994. [Google Scholar]
- Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Das, A.K.; Mishra, D.; Das, K.; Mallick, P.K.; Kumar, S.; Zymbler, M.; El-Sayed, H. Prophesying the short-term dynamics of the crude oil future price by adopting the survival of the fittest principle of improved grey optimization and extreme learning machine. Mathematics 2022, 10, 1121. [Google Scholar] [CrossRef]
- Álvarez Gutiérrez, D.; Sánchez Lasheras, F.; Martín Sánchez, V.; Suárez Gómez, S.L.; Moreno, V.; Moratalla-Navarro, F.; Molina de la Torre, A.J. A new algorithm for multivariate genome wide association studies based on differential evolution and extreme learning machines. Mathematics 2022, 10, 1024. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Etesami, G.; Felezi, M.E.; Nariman-Zadeh, N. Pareto optimal multi-objective dynamical balancing of a slider-crank mechanism using differential evolution algorithm. Int. J. Automot. Eng. 2019, 9, 3021–3032. [Google Scholar]
- Chaudhary, K.; Chaudhary, H. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm. J. Mech. Sci. Technol. 2015, 29, 5189–5198. [Google Scholar] [CrossRef]
- Chaudhary, K.; Chaudhary, H. Optimum balancing of slider-crank mechanism using equimomental system of point-masses. Procedia Technol. 2014, 14, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Orvañanos-Guerrero, M.T.; Acevedo, M.; Sánchez, C.N.; Giannoccaro, N.I.; Visconti, P.; Velázquez, R. Efficient balancing optimization of a simplified slider-crank mechanism. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020. [Google Scholar]
- Chaudhary, K.; Chaudhary, H. Shape optimization of dynamically balanced planar four-bar mechanism. Procedia Comput. Sci. 2015, 57, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Belleri, B.K.; Kerur, S.B. Balancing of planar six-bar mechanism with genetic algorithm. J. Mech. Energy Eng. 2020, 4, 303–308. [Google Scholar] [CrossRef]
- Hernández, E.; Velázquez, R.; Macías-Quijas, R.; Pissaloux, E.; Giannoccaro, N.I.; Lay-Ekuakille, A. Kinematic computations for small-size humanoid robot KUBO. ARPN J. Eng. Appl. Sci. 2017, 12, 7311–7320. [Google Scholar]
- Xu, K.; Liu, H.; Zhu, X.; Song, Y. Kinematic analysis of a novel planar six-bar bionic leg. Mech. Mach. Sci. 2019, 73, 13–21. [Google Scholar]
- Velázquez, R.; Garzón-Castro, C.L.; Acevedo, M.; Orvañanos-Guerrero, M.T.; Ghavifekr, A.A. Design and characterization of a miniature bio-inspired mobile robot. In Proceedings of the 2021 12th International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, 25–27 March 2021. [Google Scholar]
- Shao, Y.; Xiang, Z.; Liu, H.; Li, L. Conceptual design and dimensional synthesis of cam-linkage mechanisms for gait rehabilitation. Mech. Mach. Theory 2016, 104, 31–42. [Google Scholar] [CrossRef]
Element | Point i | Point j | Point k |
---|---|---|---|
1 | C | E | D |
2 | A | C | |
3 | B | F | E |
4 | D | G | |
5 | F | G |
Link n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Mass [kg] | 0.6935 | 0.1022 | 0.9636 | 0.1825 | 0.1679 |
Length [m] | 0.19 | 0.14 | 0.13416408 | 0.25 | 0.23 |
Inertia | 0.00116161 | - | 0.00622646 | - | - |
Inertia | 0.00556534 | - | 0.00657336 | - | - |
Inertia | - | 0.00066856 | - | 0.00380360 | 0.00296204 |
Inertia | 0.00167596 | - | 0.00522914 | - | - |
CoM [m] | 0.08 | 0.07 | 0.07751702 | 0.125 | 0.115 |
CoM [m] | 0.03333333 | 0.0 | 0.06559133 | 0.0 | 0.0 |
[m] | 0.05 | - | 0.09838699 | - | - |
[m] | 0.1 | - | 0.196677398 | - | - |
Counterweights | ShF Optimization | ShM Optimization | ShF and ShM Optimization |
---|---|---|---|
Cn | % ShF, % ShM | % ShF, % ShM | % ShF, % ShM |
All 5 | 72.91, 7.59 | 6.72, 76.41 | 44.2, 41.99 |
C1, C2, C3, C4 | 76.82, 3.59 | 3.21, 76.97 | 44.31, 40.73 |
C1, C2, C3 | 75.95, 0.5 | 3.53, 77.21 | 45.69, 46.81 |
C2, C3 | 56.98, 6.52 | 0.17, 67 | 41.66, 34.18 |
C3 | 44.97, 2.26 | 1.03, 61 | 28.69, 30.23 |
Reference, | Mechanism | Optimization | % of ShF | % of ShM |
---|---|---|---|---|
CC or FCC | Algorithm | Optimization | Optimization | |
[48], CC | crank-slider | Differential Evolution | 61.42 | 65.96 |
[49], CC | crank-slider | Teaching–Learning | 48 | 44 |
[50], CC | crank-slider | Genetic | 46 | 99 |
[51], FCC | crank-slider | Differential Evolution | 97.76 | 94.58 |
[52], CC | four-bar | Genetic | 50 | 68 |
[36], CC | four-bar | Firefly | 86.3 | 83.39 |
[38], FCC | four-bar | Gradient Descent | 99.70 | 83.99 |
[53], CC | six-bar | Genetic | 48.5 | 32.35 |
This work, FCC | six-bar | Differential Evolution | 76.82 | 77.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orvañanos-Guerrero, M.T.; Acevedo, M.; Sánchez, C.N.; Campos-Delgado, D.U.; Ghavifekr, A.A.; Visconti, P.; Velázquez, R. Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization. Mathematics 2022, 10, 1830. https://doi.org/10.3390/math10111830
Orvañanos-Guerrero MT, Acevedo M, Sánchez CN, Campos-Delgado DU, Ghavifekr AA, Visconti P, Velázquez R. Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization. Mathematics. 2022; 10(11):1830. https://doi.org/10.3390/math10111830
Chicago/Turabian StyleOrvañanos-Guerrero, María T., Mario Acevedo, Claudia N. Sánchez, Daniel U. Campos-Delgado, Amir Aminzadeh Ghavifekr, Paolo Visconti, and Ramiro Velázquez. 2022. "Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization" Mathematics 10, no. 11: 1830. https://doi.org/10.3390/math10111830
APA StyleOrvañanos-Guerrero, M. T., Acevedo, M., Sánchez, C. N., Campos-Delgado, D. U., Ghavifekr, A. A., Visconti, P., & Velázquez, R. (2022). Complete Balancing of the Six-Bar Mechanism Using Fully Cartesian Coordinates and Multiobjective Differential Evolution Optimization. Mathematics, 10(11), 1830. https://doi.org/10.3390/math10111830