Generalized Thermoelastic Interaction in a Half-Space under a Nonlocal Thermoelastic Model
Abstract
:1. Introduction
2. The Nonlocal Thermoelasticity Model
- (i)
- (LTEM) is the local thermo-elastic model.
- (ii)
- (NLEM) is the nonlocal elastic model.
- (iii)
- (NLTM) is the nonlocal thermal model.
- (iv)
- (NLTEM) is the nonlocal thermoelastic model.
3. Application
Analytical Method
4. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 1974, 12, 1063–1077. [Google Scholar] [CrossRef]
- Eringen, A.C. Memory-dependent nonlocal electromagnetic elastic solids and superconductivity. J. Math. Phys. 1991, 32, 787–796. [Google Scholar] [CrossRef]
- Eringen, A.C.; Wegner, J. Nonlocal continuum field theories. Appl. Mech. Rev. 2003, 56, B20–B22. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J. Math. Sci. 1999, 97, 3840–3845. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Zenkour, A.M. Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads. Microsyst. Technol. 2017, 24, 1189–1199. [Google Scholar] [CrossRef]
- Yu, Y.J.; Tian, X.-G.; Liu, X.-R. Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech.-A/Solids 2015, 51, 96–106. [Google Scholar] [CrossRef]
- Narendar, S.; Gopalakrishnan, S. Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Physical E 2010, 42, 1601–1604. [Google Scholar] [CrossRef]
- Biot, M.A. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Sarkar, N.; Mondal, S.; Othman, M.I.A. L–S theory for the propagation of the photo-thermal waves in a semiconducting nonlocal elastic medium. Waves Random Complex Media 2020, 14, 1. [Google Scholar] [CrossRef]
- Sarkar, N. Thermoelastic responses of a nonlocal elastic rod due to nonlocal heat conduction. ZAMM Z. Angew. Math. Mech. 2020, 100, e201900252. [Google Scholar] [CrossRef]
- Bachher, M.; Sarkar, N. Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Waves Random Complex Media 2019, 29, 595–613. [Google Scholar] [CrossRef]
- Bayones, F.S.; Mondal, S.; Abo-Dahab, S.M.; Kilany, A.A. Effect of moving heat source on a magneto-thermoelastic rod in the context of Eringen’s nonlocal theory under three-phase lag with a memory dependent derivative. Mech. Based Des. Struct. Mach. 2021, 28, 1–20. [Google Scholar] [CrossRef]
- Gupta, S.; Dutta, R.; Das, S. Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory. J. Ocean Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, D.; Cong, G.; Jin, D.; Borjalilou, V. Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media 2021, 15, 1–20. [Google Scholar] [CrossRef]
- Singh, B.; Bijarnia, R. Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space. Struct. Eng. Mech. 2021, 77, 473–479. [Google Scholar] [CrossRef]
- Sheoran, D.; Kumar, R.; Thakran, S.; Kalkal, K.K. Thermo-mechanical disturbances in a nonlocal rotating elastic material with temperature dependent properties. Int. J. Numer. Methods Heat Fluid Flow 2021, 31, 3597–3620. [Google Scholar] [CrossRef]
- Luo, P.; Li, X.; Tian, X. Nonlocal thermoelasticity and its application in thermoelastic problem with temperature-dependent thermal conductivity. Eur. J. Mech.-A/Solids 2021, 87, 104204. [Google Scholar] [CrossRef]
- Li, Y.; He, T.; Luo, P.; Tian, X. A generalized thermoelastic diffusion problem of thin plate heated by the ultrashort laser pulses with memory-dependent and spatial nonlocal effect. J. Therm. Stresses 2021, 44, 261–280. [Google Scholar] [CrossRef]
- Wang, E.; Carcione, J.M.; Ba, J. Wave Simulation in Partially Saturated Porothermoelastic Media. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yu, Y.J.; Tian, X.G.; Xiong, Q.L. Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech.-A/Solids 2016, 60, 238–253. [Google Scholar] [CrossRef]
- Zenkour, A.M. Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst. Technol. 2017, 23, 55–65. [Google Scholar] [CrossRef]
- Lei, J.; He, Y.; Li, Z.; Guo, S.; Liu, D. Effect of nonlocal thermoelasticity on buckling of axially functionally graded nanobeams. J. Therm. Stresses 2019, 42, 526–539. [Google Scholar] [CrossRef]
- Yu, Y.J.; Deng, Z.C. New insights on microscale transient thermoelastic responses for metals with electron-lattice coupling mechanism. Eur. J. Mech.-A/Solids 2020, 80, 103887. [Google Scholar] [CrossRef]
- Barretta, R.; Čanađija, M.; De Sciarra, F.M. Nonlocal integral thermoelasticity: A thermodynamic framework for functionally graded beams. Compos. Struct. 2019, 225, 111104. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M. Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green–Naghdi theory. Appl. Math. Model. 2018, 57, 21–36. [Google Scholar] [CrossRef]
- Lata, P.; Himanshi, H. Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force. Struct. Eng. Mech. 2022, 81, 503–511. [Google Scholar]
- Lata, P.; Singh, S. Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force. Geomach. Eng. 2020, 22, 109–117. [Google Scholar] [CrossRef]
- Lataa, P.; Kaur, I. Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate. Geomach. Eng. 2019, 19, 29–36. [Google Scholar] [CrossRef]
- Lata, P.; Kaur, H. Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain. Geomach. Eng. 2019, 19, 369–381. [Google Scholar] [CrossRef]
- Anya, A.I.; Khan, A. Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids. Geomach. Eng. 2019, 18, 605–614. [Google Scholar] [CrossRef]
- Alharbi, A.M.; Said, S.M.; Othman, M.I.A. The effect of multi-phase-lag and coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium. Steel Compos. Struct. 2021, 39, 125–134. [Google Scholar] [CrossRef]
- Abbas, I.A.; Alzahrani, F.S. Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse. Steel Compos. Struct. 2016, 21, 791–803. [Google Scholar] [CrossRef]
- Hobiny, A.D.; Abbas, I.A. Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes. Struct. Eng. Mech. 2021, 78, 297–303. [Google Scholar] [CrossRef]
- Hobiny, A.; Alzahrani, F.; Abbas, I.; Marin, M. The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation. Symmetry 2020, 12, 602. [Google Scholar] [CrossRef]
- Marin, M.; Othman, M.A.; Abbas, I. An Extension of the Domain of Influence Theorem for Generalized Thermoelasticity of Anisotropic Material with Voids. J. Comput. Theor. Nanosci. 2015, 12, 1594–1598. [Google Scholar] [CrossRef]
- Alzahrani, F.; Hobiny, A.; Abbas, I.; Marin, M. An Eigenvalues Approach for a Two-Dimensional Porous Medium Based Upon Weak, Normal and Strong Thermal Conductivities. Symmetry 2020, 12, 848. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Abdelsalam, S.I. Editorial: Recent Trends in Computational Fluid Dynamics. Front. Phys. 2020, 8, 593111. [Google Scholar] [CrossRef]
- Eringen, A.C. Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 1984, 22, 1113–1121. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Abouelregal, A.E. Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux. J. Therm. Sci. Technol. 2015, 10, JTST0019. [Google Scholar] [CrossRef] [Green Version]
- Das, N.C.; Lahiri, A.; Giri, R.R. Eigenvalue approach to generalized thermoelasticity. Indian J. Pure Appl. Math. 1997, 28, 1573–1594. [Google Scholar]
- Alzahrani, F.S.; Abbas, I.A. Fractional order gl model on thermoelastic interaction in porous media due to pulse heat flux. Geomach. Eng. 2020, 23, 217–225. [Google Scholar] [CrossRef]
- Hobiny, A.D.; Abbas, I.A. Fractional order thermoelastic wave assessment in a two-dimension medium with voids. Geomach. Eng. 2020, 21, 85–93. [Google Scholar] [CrossRef]
- Stehfest, H. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Commun. ACM 1970, 13, 47–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, I.; Hobiny, A.; Vlase, S.; Marin, M. Generalized Thermoelastic Interaction in a Half-Space under a Nonlocal Thermoelastic Model. Mathematics 2022, 10, 2168. https://doi.org/10.3390/math10132168
Abbas I, Hobiny A, Vlase S, Marin M. Generalized Thermoelastic Interaction in a Half-Space under a Nonlocal Thermoelastic Model. Mathematics. 2022; 10(13):2168. https://doi.org/10.3390/math10132168
Chicago/Turabian StyleAbbas, Ibrahim, Aatef Hobiny, Sorin Vlase, and Marin Marin. 2022. "Generalized Thermoelastic Interaction in a Half-Space under a Nonlocal Thermoelastic Model" Mathematics 10, no. 13: 2168. https://doi.org/10.3390/math10132168
APA StyleAbbas, I., Hobiny, A., Vlase, S., & Marin, M. (2022). Generalized Thermoelastic Interaction in a Half-Space under a Nonlocal Thermoelastic Model. Mathematics, 10(13), 2168. https://doi.org/10.3390/math10132168