Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects
Abstract
:1. Introduction
- The mathematical formulation for Jeffrey fluid flow towards a flat and cylindrical surface.
- Examination of the Nusselt number at both flat and cylindrical surfaces.
- For both surfaces, prediction of the Nusselt number by using an artificial neural networking model.
2. Flow Formulation and Data Set
2.1. Flow Regime-I
2.2. Flow Regime-II
2.3. Flow Regime-III
2.4. Flow Regime-IV
3. Formulation of ANN
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
EJ | Ratio of relaxation and retardation times |
V | Kinematic viscosity |
αJ | Angle of inclination |
U, V | Velocity components |
ε2 | Retardation time |
X, R | Cylindrical coordinates |
g | Gravitational acceleration |
Ambient temperature | |
σ | Electrical conductivity |
B0 | Magnetic field constant |
cP | Specific heat at constant pressure |
Q1 | Heat generation/absorption coefficient |
ε3, ε5 | Dimensional constants |
σ* | Steffan–Boltzman constant |
Stream function | |
TW | Surface temperature |
K | Curvature parameter |
MJ | Magnetic field parameter |
λM | Mixed convection parameter |
T | Fluid temperature |
uJ | Free stream velocity |
S | Temperature stratification parameter |
H− | Heat absorption parameter |
ρ | Fluid density |
k | Thermal conductivity |
QR | Radiative heat flux |
L | Characteristic length |
R1 | Radius of cylinder |
Fluid velocity (dimensionless) | |
Fluid temperature (dimensionless) | |
T0 | Reference temperature |
BJ | Deborah number |
AJ | Velocities ration parameter |
Pr | Prandtl number |
H+ | Heat generation parameter |
R | Thermal radiation parameter |
References
- Pittman, J.F.T.; Richardson, J.F.; Sherrard, C.P. An experimental study of heat transfer by laminar natural convection between an electrically-heated vertical plate and both Newtonian and non-Newtonian fluids. Int. J. Heat Mass Transf. 1999, 42, 657–671. [Google Scholar] [CrossRef]
- Rao, B.K. Heat transfer to non-Newtonian flows over a cylinder in cross flow. Int. J. Heat Fluid Flow 2000, 21, 693–700. [Google Scholar] [CrossRef]
- Pinarbasi, A.; Ozalp, C. Effect of viscosity models on the stability of a non-Newtonian fluid in a channel with heat transfer. Int. Commun. Heat Mass Transf. 2001, 28, 369–378. [Google Scholar] [CrossRef]
- Eldabe, N.T.M.; Mohamed, M.A.A. Heat and mass transfer in hydromagnetic flow of the non-Newtonian fluid with heat source over an accelerating surface through a porous medium. Chaos Solitons Fractals 2002, 13, 907–917. [Google Scholar] [CrossRef]
- Attia, H.A. Unsteady flow of a non-Newtonian fluid above a rotating disk with heat transfer. Int. J. Heat Mass Transf. 2003, 46, 2695–2700. [Google Scholar] [CrossRef]
- Wichterle, K. Heat transfer in temperature-dependent non-Newtonian flow. Chem. Eng. Process. Process Intensif. 2004, 43, 1223–1230. [Google Scholar] [CrossRef]
- Attia, H.A. Numerical study of flow and heat transfer of a non-Newtonian fluid on a rotating porous disk. Appl. Math. Comput. 2005, 163, 327–342. [Google Scholar] [CrossRef]
- Maia, C.R.M.; João, B.A.; Luiz, F.M. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section. Int. J. Therm. Sci. 2006, 45, 1066–1072. [Google Scholar] [CrossRef]
- Barkhordari, M.; Etemad, S.G. Numerical study of slip flow heat transfer of non-Newtonian fluids in circular microchannels. Int. J. Heat Fluid Flow 2007, 28, 1027–1033. [Google Scholar] [CrossRef]
- Yao, L.-S.; Molla, M.M. Forced convection of non-Newtonian fluids on a heated flat plate. Int. J. Heat Mass Transf. 2008, 51, 5154–5159. [Google Scholar] [CrossRef]
- Sahoo, B. Effects of partial slip, viscous dissipation and Joule heating on Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2982–2998. [Google Scholar] [CrossRef]
- Li, B.; Zheng, L.; Zhang, X. Heat transfer in pseudo-plastic non-Newtonian fluids with variable thermal conductivity. Energy Convers. Manag. 2011, 52, 355–358. [Google Scholar] [CrossRef]
- Pimenta, T.A.; Campos, J.B.L.M. Heat transfer coefficients from Newtonian and non-Newtonian fluids flowing in laminar regime in a helical coil. Int. J. Heat Mass Transf. 2013, 58, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Rios-Iribe, E.; Cervantes-Gaxiola, M.E.; Rubio-Castro, E.; Ponce-Ortega, J.M.; González-Llanes, M.D.; Reyes-Moreno, C.; Hernández-Calderón, O.M. Heat transfer analysis of a non-Newtonian fluid flowing through a circular tube with twisted tape inserts. Appl. Therm. Eng. 2015, 84, 225–236. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, Y.; Xu, T. Study on Heat Transfer of Non-Newtonian Power Law Fluid in Pipes with Different Cross Sections. Procedia Eng. 2017, 205, 3381–3388. [Google Scholar] [CrossRef]
- Mozafarie, S.S.; Javaherdeh, K. Numerical design and heat transfer analysis of a non-Newtonian fluid flow for annulus with helical fins. Eng. Sci. Technol. Int. J. 2019, 22, 1107–1115. [Google Scholar] [CrossRef]
- Rosa, V.d.S.; Torneiros, D.L.M.; Maranhão, H.W.d.A.; Moraes, M.S.d.; Taqueda, M.E.S.; Paiva, J.L.d.; Santos, A.R.; Júnior, D.d.M. Heat transfer and power consumption of Newtonian and non-Newtonian liquids in stirred tanks with vertical tube baffles. Appl. Therm. Eng. 2020, 176, 115355. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Zhapbasbayev, U.K. RANS modeling of turbulent flow and heat transfer of non-Newtonian viscoplastic fluid in a pipe. Case Stud. Therm. Eng. 2021, 28, 101455. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.; Wang, J.; Feng, L.-F. Numerical study on flow, heat transfer and mixing of highly viscous non-newtonian fluid in Sulzer mixer reactor. Int. J. Heat Mass Transf. 2022, 183, 122203. [Google Scholar] [CrossRef]
- Mahabaleshwar, U.S.; Vishalakshi, A.B.; Azese, M.N. The role of Brinkmann ratio on non-Newtonian fluid flow due to a porous shrinking/stretching sheet with heat transfer. Eur. J. Mech.-B/Fluids 2022, 92, 153–165. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, Y.; Qi, H.; Xu, H. Numerical study of pulsatile non-Newtonian blood flow and heat transfer in small vessels under a magnetic field. Int. Commun. Heat Mass Transf. 2022, 133, 105930. [Google Scholar] [CrossRef]
- Rehman, K.U.; Shatanawi, W.; Al-Mdallal, Q.M. A comparative remark on heat transfer in thermally stratified MHD Jeffrey fluid flow with thermal radiations subject to cylindrical/plane surfaces. Case Stud. Therm. Eng. 2022, 32, 101913. [Google Scholar] [CrossRef]
- Vakili, M.; Khosrojerdi, S.; Aghajannezhad, P.; Yahyaei, M. A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int. Commun. Heat Mass Transf. 2017, 82, 40–48. [Google Scholar] [CrossRef]
- Bahiraei, M.; Heshmatian, S.; Moayedi, H. Artificial intelligence in the field of nanofluids: A review on applications and potential future directions. Powder Technol. 2019, 353, 276–301. [Google Scholar] [CrossRef]
- Vaferi, B.; Samimi, F.; Pakgohar, E.; Mowla, D. Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 2014, 267, 1–10. [Google Scholar] [CrossRef]
- Çolak, A.B.; Yıldız, O.; Bayrak, M.; Tezekici, B.S. Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int. J. Energy Res. 2020, 44, 7198–7215. [Google Scholar] [CrossRef]
- Canakci, A.; Ozsahin, S.; Varol, T. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 2012, 228, 26–35. [Google Scholar] [CrossRef]
- Vaferi, B.; Eslamloueyan, R.; Ayatollahi, S. Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks. J. Pet. Sci. Eng. 2011, 77, 254–262. [Google Scholar] [CrossRef]
- Güzel, T.; Çolak, A.B. Artificial intelligence approach on predicting current values of polymer interface Schottky diode based on temperature and voltage: An experimental study. Superlattices Microstruct. 2021, 153, 106864. [Google Scholar] [CrossRef]
- Çolak, A.B. An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks. Int. J. Energy Res. 2021, 45, 478–500. [Google Scholar] [CrossRef]
- Esmaeilzadeh, F.; Teja, A.S.; Bakhtyari, A. The thermal conductivity, viscosity, and cloud points of bentonite nanofluids with n-pentadecane as the base fluid. J. Mol. Liq. 2020, 300, 112307. [Google Scholar] [CrossRef]
- Barati-Harooni, A.; Najafi-Marghmaleki, A. An accurate RBF-NN model for estimation of viscosity of nanofluids. J. Mol. Liq. 2016, 224, 580–588. [Google Scholar] [CrossRef]
- Rostamian, S.H.; Biglari, M.; Saedodin, S.; Esfe, M.H. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq. 2017, 231, 364–369. [Google Scholar] [CrossRef]
- Ahmadloo, E.; Azizi, S. Prediction of thermal conductivity of various nanofluids using artificial neural network. Int. Commun. Heat Mass Transf. 2016, 74, 69–75. [Google Scholar] [CrossRef]
- Bonakdari, H.; Zaji, A.H. Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network. Flow Meas. Instrum. 2016, 49, 46–51. [Google Scholar] [CrossRef]
- Ali, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G. Application of artificial neural networks (ANN) for vapor-liquid-solid equilibrium prediction for CH4-CO2 binary mixture. Greenh. Gases Sci. Technol. 2019, 9, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N. Experimental and neural network modeling of partial uptake for a carbon dioxide/methane/water ternary mixture on 13X zeolite. Energy Technol. 2017, 5, 1373–1391. [Google Scholar] [CrossRef]
- Vafaei, M.; Afrand, M.; Sina, N.; Kalbasi, R.; Sourani, F.; Teimouri, H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E Low-Dimens. Syst. Nanostructures 2017, 85, 90–96. [Google Scholar] [CrossRef]
- Akhgar, A.; Toghraie, D.; Sina, N.; Afrand, M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 2019, 355, 602–610. [Google Scholar] [CrossRef]
- Acikgoz, O.; Çolak, A.B.; Camci, M.; Karakoyun, Y.; Dalkilic, A.S. Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection. Int. J. Therm. Sci. 2022, 178, 107624. [Google Scholar] [CrossRef]
- Öcal, S.; Gökçek, M.; Çolak, A.B.; Korkanç, M. A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization. Heat Transf. Res. Heat Transf. Res. 2021, 52, 55–79. [Google Scholar] [CrossRef]
- Khosravi, R.; Rabiei, S.; Khaki, M.; Safaei, M.R.; Goodarzi, M. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J. Therm. Anal. Calorim. 2021, 145, 1949–1967. [Google Scholar] [CrossRef]
- Soomro, F.A.; Alamir, M.A.; El-Sapa, S.; Haq, R.U.; Soomro, M.A. Artificial neural network modeling of MHD slip-flow over a permeable stretching surface. Arch. Appl. Mech. 2022, 92, 2179–2189. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Shoaib, M.; Hussain, S.; Nisar, K.S.; Islam, S. Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet. Int. Commun. Heat Mass Transf. 2022, 130, 105799. [Google Scholar] [CrossRef]
- Kalkan, O.; Colak, A.B.; Celen, A.; Bakirci, K.; Dalkilic, A.S. Prediction of experimental thermal performance of new designed cold plate for electric vehicles’ Li-ion pouch-type battery with artificial neural network. J. Energy Storage 2022, 48, 103981. [Google Scholar] [CrossRef]
- Mahapatra, T.; Gupta, A.S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 2002, 38, 517–521. [Google Scholar] [CrossRef]
Pr | S | H+ | H− | Nu |
---|---|---|---|---|
1.5 | 0.1 | 0.1 | 0.1 | 1.0942 |
1.8 | 0.1 | 0.1 | 0.1 | 1.2382 |
2.1 | 0.1 | 0.1 | 0.1 | 1.3716 |
2.2 | 0.1 | 0.1 | 0.1 | 1.4140 |
2.3 | 0.1 | 0.1 | 0.1 | 1.4553 |
3.5 | 0.0 | 0.1 | 0.1 | 1.9767 |
3.5 | 0.1 | 0.1 | 0.1 | 1.8910 |
3.5 | 0.2 | 0.1 | 0.1 | 1.8058 |
3.5 | 0.3 | 0.1 | 0.1 | 1.7211 |
3.5 | 0.4 | 0.1 | 0.1 | 1.6369 |
2.9 | 0.1 | 0.0 | 0.1 | 1.7733 |
2.9 | 0.1 | 0.1 | 0.1 | 1.6855 |
2.9 | 0.1 | 0.2 | 0.1 | 1.5812 |
2.9 | 0.1 | 0.3 | 0.1 | 1.4372 |
2.9 | 0.1 | 0.4 | 0.1 | 0.9810 |
2.4 | 0.1 | 0 | −0.1 | 1.6558 |
2.4 | 0.1 | 0 | −0.2 | 1.7245 |
2.4 | 0.1 | 0 | −0.3 | 1.7886 |
2.4 | 0.1 | 0 | −0.4 | 1.8492 |
2.4 | 0.1 | 0 | −0.5 | 1.9069 |
Pr | S | H+ | H− | Nu |
---|---|---|---|---|
1.5 | 0.1 | 0.1 | 0.1 | 1.2401 |
1.8 | 0.1 | 0.1 | 0.1 | 1.4033 |
2.1 | 0.1 | 0.1 | 0.1 | 1.5545 |
2.2 | 0.1 | 0.1 | 0.1 | 1.6025 |
2.3 | 0.1 | 0.1 | 0.1 | 1.6493 |
3.5 | 0.0 | 0.1 | 0.1 | 2.2403 |
3.5 | 0.1 | 0.1 | 0.1 | 2.1431 |
3.5 | 0.2 | 0.1 | 0.1 | 2.0466 |
3.5 | 0.3 | 0.1 | 0.1 | 1.9506 |
3.5 | 0.4 | 0.1 | 0.1 | 1.8552 |
2.9 | 0.1 | 0.0 | 0.1 | 2.0097 |
2.9 | 0.1 | 0.1 | 0.1 | 1.9102 |
2.9 | 0.1 | 0.2 | 0.1 | 1.7920 |
2.9 | 0.1 | 0.3 | 0.1 | 1.6288 |
2.9 | 0.1 | 0.4 | 0.1 | 1.1118 |
2.4 | 0.1 | 0 | −0.1 | 1.8766 |
2.4 | 0.1 | 0 | −0.2 | 1.9544 |
2.4 | 0.1 | 0 | −0.3 | 2.0271 |
2.4 | 0.1 | 0 | −0.4 | 2.0958 |
2.4 | 0.1 | 0 | −0.5 | 2.1612 |
Pr | S | H+ | H− | Nu |
---|---|---|---|---|
1.5 | 0.1 | 0.1 | 0.1 | 1.5494 |
1.8 | 0.1 | 0.1 | 0.1 | 1.6940 |
2.1 | 0.1 | 0.1 | 0.1 | 1.8270 |
2.2 | 0.1 | 0.1 | 0.1 | 1.8692 |
2.3 | 0.1 | 0.1 | 0.1 | 1.9105 |
3.5 | 0.0 | 0.1 | 0.1 | 2.4081 |
3.5 | 0.1 | 0.1 | 0.1 | 2.3479 |
3.5 | 0.2 | 0.1 | 0.1 | 2.2883 |
3.5 | 0.3 | 0.1 | 0.1 | 2.2293 |
3.5 | 0.4 | 0.1 | 0.1 | 2.1710 |
2.9 | 0.1 | 0.0 | 0.1 | 2.2056 |
2.9 | 0.1 | 0.1 | 0.1 | 2.1407 |
2.9 | 0.1 | 0.2 | 0.1 | 2.0737 |
2.9 | 0.1 | 0.3 | 0.1 | 2.0045 |
2.9 | 0.1 | 0.4 | 0.1 | 1.9329 |
2.4 | 0.1 | 0 | −0.1 | 2.0121 |
2.4 | 0.1 | 0 | −0.2 | 2.0711 |
2.4 | 0.1 | 0 | −0.3 | 2.1280 |
2.4 | 0.1 | 0 | −0.4 | 2.2366 |
2.4 | 0.1 | 0 | −0.5 | 2.2885 |
Pr | S | H+ | H− | Nu |
---|---|---|---|---|
1.5 | 0.1 | 0.1 | 0.1 | 1.7560 |
1.8 | 0.1 | 0.1 | 0.1 | 1.9199 |
2.1 | 0.1 | 0.1 | 0.1 | 2.0706 |
2.2 | 0.1 | 0.1 | 0.1 | 2.1184 |
2.3 | 0.1 | 0.1 | 0.1 | 2.1652 |
3.5 | 0.0 | 0.1 | 0.1 | 2.7292 |
3.5 | 0.1 | 0.1 | 0.1 | 2.6610 |
3.5 | 0.2 | 0.1 | 0.1 | 2.5934 |
3.5 | 0.3 | 0.1 | 0.1 | 2.5265 |
3.5 | 0.4 | 0.1 | 0.1 | 2.4605 |
2.9 | 0.1 | 0.0 | 0.1 | 2.4997 |
2.9 | 0.1 | 0.1 | 0.1 | 2.4261 |
2.9 | 0.1 | 0.2 | 0.1 | 2.3502 |
2.9 | 0.1 | 0.3 | 0.1 | 2.2718 |
2.9 | 0.1 | 0.4 | 0.1 | 2.1906 |
2.4 | 0.1 | 0 | −0.1 | 2.2804 |
2.4 | 0.1 | 0 | −0.2 | 2.3472 |
2.4 | 0.1 | 0 | −0.3 | 2.4117 |
2.4 | 0.1 | 0 | −0.4 | 2.5348 |
2.4 | 0.1 | 0 | −0.5 | 2.5936 |
Flow Regime-I | Flow Regime-II | Flow Regime-III | Flow Regime-IV | |
---|---|---|---|---|
MSE | 3.48 × 10−4 | −5.50 × 10−4 | 3.63 × 10−4 | −9.16 × 10−4 |
MoD (%) | 0.01 | −0.01 | 0.01 | −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, K.U.; Çolak, A.B.; Shatanawi, W. Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects. Mathematics 2022, 10, 2394. https://doi.org/10.3390/math10142394
Rehman KU, Çolak AB, Shatanawi W. Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects. Mathematics. 2022; 10(14):2394. https://doi.org/10.3390/math10142394
Chicago/Turabian StyleRehman, Khalil Ur, Andaç Batur Çolak, and Wasfi Shatanawi. 2022. "Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects" Mathematics 10, no. 14: 2394. https://doi.org/10.3390/math10142394
APA StyleRehman, K. U., Çolak, A. B., & Shatanawi, W. (2022). Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects. Mathematics, 10(14), 2394. https://doi.org/10.3390/math10142394