A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times
Abstract
:1. Introduction
2. Manufacturing Scheduling
2.1. General Overview
2.2. Scheduling Assumptions
2.3. Review about Scheduling Sequence-Dependent Setups in Unrelated Parallel Machines
3. The Scheduling Problem
- is the number of parallel machines;
- denotes the number of tasks to be scheduled;
- Each machine can only process one task at a time without preemption;
- For the initial time instant, which is at time zero, all tasks are available. No restrictions of precedence are imposed among tasks;
- For each machine , each task has a processing time, ;
- For each machine , for processing tasks just after tasks , there is a setup time, . The setup time is different for each machine;
- The objective is to minimize the makespan . The term span is used to define the completion time of a machine, while the term makespan is used for the maximum span in the solution of the problem.
- : maximum completion time of task ;
- : processing time of task in machine ;
- : setup time dependent on the processing sequence of task after task in machine ;
- : setup time for processing first task on machine ;
- : 1 if task is processed immediately after task in machine , and 0 otherwise;
- : 1 if task is the first one to be processed in machine and 0 otherwise;
- : 1 if task is the last task to be processed in machine , and 0 otherwise;
- : a large positive number (usually denoted by a capital M).
4. Computational Study
4.1. Scheduling Data Description
4.2. Implementation Details
5. Comparative Statistical Analysis
5.1. Small Problems
5.2. Large Problems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuh, G.; Reuter, C.; Prote, J.-P.; Brambring, F.; Ays, J. Increasing data integrity for improving decision making in production planning and control. CIRP Ann. 2017, 66, 425–428. [Google Scholar] [CrossRef]
- Pinedo, M.L. Scheduling Theory, Algorithms, and Systems, 5th ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Santos, A.S.; Madureira, A.M.; Varela, M.L.R. An ordered heuristic for the allocation of resources in unrelated paral-lel-machines. Int. J. Ind. Eng. Comput. 2015, 6, 145–156. [Google Scholar]
- Su, L.-H.; Cheng, T.; Chou, F.-D. A minimum-cost network flow approach to preemptive parallel-machine scheduling. Comput. Ind. Eng. 2013, 64, 453–458. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, Y.; Zhang, A. Parallel machines scheduling with machine maintenance for minsum criteria. Eur. J. Oper. Res. 2011, 212, 287–292. [Google Scholar] [CrossRef]
- Vallada, E.; Ruiz, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 2011, 211, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Rabadi, G.; Moraga, R.J.; Al-Salem, A. Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times. J. Intell. Manuf. 2006, 17, 85–97. [Google Scholar] [CrossRef]
- Arnaout, J.-P.; Rabadi, G.; Musa, R. A two-stage Ant Colony Optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. J. Intell. Manuf. 2009, 21, 693–701. [Google Scholar] [CrossRef]
- Arnaout, J.-P.; Musa, R.; Rabadi, G. A two-stage Ant Colony optimization algorithm to minimize the makespan on unrelated parallel machines—part II: Enhancements and experimentations. J. Intell. Manuf. 2012, 25, 43–53. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, X.; Gao, X.-D.; Xu, D.-D.; Lu, Z.-Y. Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization. Mathematics 2022, 10, 1261. [Google Scholar] [CrossRef]
- Leung, M.-F.; Coello, C.A.C.; Cheung, C.-C.; Ng, S.-C.; Lui, A.K.-F. A Hybrid Leader Selection Strategy for Many-Objective Particle Swarm Optimization. IEEE Access 2020, 8, 189527–189545. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Tasgetiren, M.F.; Liang, Y.-C. A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Comput. Ind. Eng. 2008, 55, 795–816. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.H.; Hnaien, F.; Dugardinr, F. Exact method to optimize the total electricity cost in two-machine permutation flow shop scheduling problem under Time-of-use tariff. Comput. Oper. Res. 2022, 144, 105788. [Google Scholar] [CrossRef]
- Foumani, M.; Razeghi, A.; Smith-Miles, K. Stochastic optimization of two-machine flow shop robotic cells with con-trollable inspection times: From theory toward practice. Robot. Comput.-Integr. Manuf. 2020, 61, 101822. [Google Scholar] [CrossRef]
- Artiba, A.; Elmaghraby, S.E. The Planning and Scheduling of Production Systems; Springer Science & Business Media: Berlin, Germany, 1996. [Google Scholar] [CrossRef]
- Brucker, P. Due-date scheduling. In Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- McNaughton, R. Scheduling with Deadlines and Loss Functions. Manag. Sci. 1959, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bülbül, K.; Şen, H. An exact extended formulation for the unrelated parallel machine total weighted completion time problem. J. Sched. 2016, 20, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Nikabadi, M.S.; Naderi, R. A hybrid algorithm for unrelated parallel machines scheduling. Int. J. Ind. Eng. Comput. 2016, 7, 681–702. [Google Scholar] [CrossRef]
- Reddy, M.S.; Ratnam, C.; Agrawal, R.; Varela, M.L.; Sharma, I.; Manupati, V. Investigation of reconfiguration effect on makespan with social network method for flexible job shop scheduling problem. Comput. Ind. Eng. 2017, 110, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Varela, M.L.R.; Silva, S.D.C. An ontology for a model of manufacturing scheduling problems to be solved on the web. In Proceedings of the International Conference on Information Technology for Balanced Automation Systems, Porto, Portugal, 23–25 June 2008; Springer: Boston, MA, USA, 2008; pp. 197–204. [Google Scholar]
- Woo, Y.-B.; Jung, S.; Kim, B.S. A rule-based genetic algorithm with an improvement heuristic for unrelated parallel machine scheduling problem with time-dependent deterioration and multiple rate-modifying activities. Comput. Ind. Eng. 2017, 109, 179–190. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Q.; Huang, S. Dynamic order acceptance and scheduling problem with sequence-dependent setup time. Int. J. Prod. Res. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.; Wong, T. Studying the impact of sequence-dependent set-up times in integrated process planning and scheduling with E-ACO heuristic. Int. J. Prod. Res. 2015, 54, 4815–4838. [Google Scholar] [CrossRef]
- Allahverdi, A. The third comprehensive survey on scheduling problems with setup times/costs. Eur. J. Oper. Res. 2015, 246, 345–378. [Google Scholar] [CrossRef]
- Baker, K.R.; Trietsch, D. Principles of Sequencing and Scheduling; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Se-Quencing and Scheduling; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326. [Google Scholar]
- Blazewicz, J.; Domschke, W.; Pesch, E. The job shop scheduling problem: Conventional and new solution techniques. Eur. J. Oper. Res. 1996, 93, 1–33. [Google Scholar] [CrossRef]
- Błażewicz, J.; Machowiak, M.; Węglarz, J.; Kovalyov, M.Y.; Trystram, D. Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan. Ann. Oper. Res. 2004, 129, 65–80. [Google Scholar] [CrossRef]
- Lin, S.-W.; Lu, C.-C.; Ying, K.-C. Minimization of total tardiness on unrelated parallel machines with sequence- and machine-dependent setup times under due date constraints. Int. J. Adv. Manuf. Technol. 2010, 53, 353–361. [Google Scholar] [CrossRef]
- Zeidi, J.R.; MohammadHosseini, S. Scheduling unrelated parallel machines with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 2015, 81, 1487–1496. [Google Scholar] [CrossRef]
- Jungwattanakit, J.; Reodecha, M.; Chaovalitwongse, P.; Werner, F. A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Comput. Oper. Res. 2009, 36, 358–378. [Google Scholar] [CrossRef]
- Gendreau, M.; Laporte, G.; Guimarães, E.M. A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 2001, 133, 183–189. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, K.-H.; Jang, W.; Chen, F.F. Unrelated parallel machine scheduling with setup times using simulated annealing. Robot. Comput. Manuf. 2002, 18, 223–231. [Google Scholar] [CrossRef]
- Tang, L.; Wang, X. Simultaneously scheduling multiple turns for steel color-coating production. Eur. J. Oper. Res. 2009, 198, 715–725. [Google Scholar] [CrossRef]
- Pfund, M.; Fowler, J.W.; Gupta, J.N.D. A Survey Of Algorithms For Single And Multi-Objective Unrelated Parallel-Machine Deterministic Scheduling Problems. J. Chin. Inst. Ind. Eng. 2004, 21, 230–241. [Google Scholar] [CrossRef]
- Kim, D.-W.; Na, D.-G.; Chen, F.F. Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective. Robot. Comput. Manuf. 2003, 19, 173–181. [Google Scholar] [CrossRef]
- Ghirardi, M.; Potts, C. Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach. Eur. J. Oper. Res. 2005, 165, 457–467. [Google Scholar] [CrossRef]
- Zheng, X.-L.; Wang, L. A Collaborative Multiobjective Fruit Fly Optimization Algorithm for the Resource Constrained Unrelated Parallel Machine Green Scheduling Problem. IEEE Trans. Syst. Man, Cybern. Syst. 2016, 48, 790–800. [Google Scholar] [CrossRef]
- Aydilek, A.; Aydilek, H.; Allahverdi, A. Minimising maximum tardiness in assembly flowshops with setup times. Int. J. Prod. Res. 2017, 55, 7541–7565. [Google Scholar] [CrossRef]
- Abreu, L.; Prata, B. A Hybrid Genetic Algorithm for Solving the Unrelated Parallel Machine Scheduling Problem with Sequence Dependent Setup Times. IEEE Lat. Am. Trans. 2018, 16, 1715–1722. [Google Scholar] [CrossRef]
- Gedik, R.; Kalathia, D.; Egilmez, G.; Kirac, E. A constraint programming approach for solving unrelated parallel machine scheduling problem. Comput. Ind. Eng. 2018, 121, 139–149. [Google Scholar] [CrossRef]
- Fanjul-Peyro, L.; Perea, F.; Ruiz, R. Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. Eur. J. Oper. Res. 2017, 260, 482–493. [Google Scholar] [CrossRef]
- Arnaout, J.-P. A worm optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Ann. Oper. Res. 2019, 285, 273–293. [Google Scholar] [CrossRef] [Green Version]
- Amaral, G.; Costa, L.; Rocha, A.M.A.C.; Varela, L.; Madureira, A. Application of the Simulated Annealing Algorithm to Minimize the makespan on the Unrelated Parallel Machine Scheduling Problem with Setup Times. In International Conference on Hybrid Intelligent Systems; Springer: Cham, Switzerland, 2019; pp. 398–407. [Google Scholar] [CrossRef]
- Rabadi, G. (Ed.) Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling; Springer: Berlin, Germany, 2016; Volume 236. [Google Scholar]
- Guinet, A. Textile production systems: A succession of non-identical parallel processor shops. J. Oper. Res. Soc. 1991, 42, 655–671. [Google Scholar] [CrossRef]
- Scheduling Research Virtual Center Homepage. Available online: www.SchedulingResearch.com (accessed on 17 January 2022).
- Holland, J.H. Adaptation in Natural and Artificial Systems, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar]
- Teoh, T.T.; Rong, Z. Python for Data Analysis. In Artificial Intelligence with Python; Springer: Singapore, 2022; pp. 107–122. [Google Scholar] [CrossRef]
- Bonald, T.; de Lara, N.; Lutz, Q.; Charpentier, B. Scikit-network: Graph analysis in python. J. Mach. Learn Res. 2020, 21, 1–6. [Google Scholar]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; Wiley: Hoboken, NJ, USA, 2018; p. 710. [Google Scholar]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
Balanced | Dominant S | Dominant P | |||||
---|---|---|---|---|---|---|---|
M | N | ACOII | GA | ACOII | GA | ACOII | GA |
2 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | |
9 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 | 6 | 0 | 0 | 0 | 0 | 0 | −0.00034 |
7 | 0 | 0 | 0 | 0.0005 | 0 | 0 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | 8 | 0 | 0 | NA | NA | NA | NA |
M | N | Balanced | Dominant S | Dominant P |
---|---|---|---|---|
2 | 10 | 0 | −0.00026 | −0.00026 |
11 | 0.000469 | 0 | 0 | |
4 | 6 | 0 | 0 | 0.000336 |
7 | 0 | −0.0005 | 0 | |
9 | 0 | 0.000117 | 0.00282 | |
11 | −0.00055 | 0.000112 | 0 | |
6 | 10 | 0.000271 | 0 | 0 |
11 | 0.001328 | 0 | 0.000167 | |
8 | 11 | 0 | 0.000351 | 0 |
Balanced | Dominant S | Dominant P | |||||
---|---|---|---|---|---|---|---|
M | N | p-Value | CI | p-Value | CI | p-Value | CI |
2 | 10 | - | - | 0.334 | [−0.305;0.839] | 0.334 | [−0.305;0.839] |
11 | 0.334 | [−1.048;0.382] | - | - | - | - | |
4 | 6 | - | - | - | - | 0.334 | [−0.419;0.153] |
7 | - | - | 0.334 | [−0.229;0.629] | - | - | |
9 | - | - | 0.334 | [0.210;0.076] | 0.334 | [−5.032;1.832] | |
11 | 0.334 | [−0.229;0.629] | 0.334 | [−0.210;0.076] | - | - | |
6 | 10 | 0.317 | [−0.210;0.076] | - | - | - | - |
11 | 0.461 | [−1.078;0.412] | - | - | 0.751 | [−0.509;0.376] | |
8 | 11 | - | - | 0.334 | [0.419;0.153] | - | - |
Number of Tasks (N) | ||||||||
---|---|---|---|---|---|---|---|---|
6 | 7 | 8 | 9 | 10 | 11 | |||
Number of Machines (M) | Balanced | 2 | 11.44 | 11.76 | 12.03 | 12.34 | 12.71 | 12.79 |
4 | 13.60 | 14.16 | 14.38 | 14.33 | 14.85 | 15.02 | ||
6 | - | - | 15.16 | 15.77 | 16.13 | 15.85 | ||
8 | - | - | - | - | 16.20 | 16.63 | ||
Dominant P | 2 | 10.97 | 11.11 | 11.39 | 12.24 | 12.54 | 12.66 | |
4 | 13.64 | 14.15 | 13.79 | 13.67 | 14.00 | 14.42 | ||
6 | - | - | 14.77 | 15.88 | 16.19 | 16.32 | ||
8 | - | - | - | - | 17.13 | 17.61 | ||
Dominant S | 2 | 11.34 | 11.81 | 12.01 | 11.35 | 11.69 | 12.33 | |
4 | 12.99 | 13.89 | 14.29 | 14.46 | 14.77 | 14.95 | ||
6 | - | - | 14.54 | 15.37 | 15.01 | 15.13 | ||
8 | - | - | - | - | 16.54 | 16.83 |
M | N | Balanced | Dominant S | Dominant P |
---|---|---|---|---|
2 | 20 | −0.0052 | 0.6010 | 0.5968 |
40 | −0.0243 | 0.5839 | 0.5875 | |
60 | −0.0312 | 0.5801 | 0.5823 | |
80 | −0.0352 | 0.5771 | 0.5801 | |
100 | −0.0374 | 0.5902 | 0.5929 | |
120 | −0.0363 | 0.5883 | 0.5901 | |
4 | 20 | −0.0086 | 0.6038 | 0.5942 |
40 | −0.0281 | 0.6017 | 0.6017 | |
60 | −0.0418 | 0.5909 | 0.5842 | |
80 | −0.0456 | 0.5810 | 0.5783 | |
100 | −0.0497 | 0.5803 | 0.5815 | |
120 | −0.0544 | 0.5708 | 0.5755 | |
6 | 20 | −0.0064 | 0.6628 | 0.6659 |
40 | −0.0308 | 0.6185 | 0.6004 | |
60 | −0.0499 | 0.5681 | 0.5698 | |
80 | −0.0484 | 0.5864 | 0.5849 | |
100 | −0.0663 | 0.5740 | 0.5666 | |
120 | −0.0767 | 0.5463 | 0.5484 | |
8 | 20 | −0.0053 | 0.6594 | 0.6558 |
40 | −0.0491 | 0.5694 | 0.5703 | |
60 | −0.0502 | 0.5904 | 0.5930 | |
80 | −0.0764 | 0.5326 | 0.5282 | |
100 | −0.0763 | 0.5577 | 0.5647 | |
120 | −0.0978 | 0.5245 | 0.5113 | |
10 | 20 | −0.0192 | 0.6055 | 0.6072 |
40 | −0.0388 | 0.5704 | 0.5653 | |
60 | −0.0723 | 0.5109 | 0.5082 | |
80 | −0.0996 | 0.4983 | 0.4919 | |
100 | −0.0996 | 0.5036 | 0.4976 | |
120 | −0.1067 | 0.4945 | 0.5001 | |
12 | 20 | −0.0198 | 0.6008 | −0.0187 |
40 | −0.0323 | −0.0143 | −0.0126 | |
60 | −0.0917 | 0.4929 | −0.0418 | |
80 | −0.0924 | 0.5278 | −0.0503 | |
100 | −0.0905 | 0.5271 | −0.0424 | |
120 | −0.1261 | 0.4602 | −0.0817 |
Number of Tasks (N) | ||||||||
---|---|---|---|---|---|---|---|---|
20 | 40 | 60 | 80 | 100 | 120 | |||
Number of Machines (M) | Balanced | 2 | 19.95 | 29.97 | 37.06 | 63.74 | 81.56 | 110.90 |
4 | 22.24 | 35.65 | 50.56 | 60.74 | 85.44 | 94.31 | ||
6 | 25.11 | 33.63 | 45.22 | 53.70 | 73.65 | 86.47 | ||
8 | 26.74 | 35.38 | 41.47 | 50.82 | 60.51 | 71.67 | ||
10 | 31.36 | 39.80 | 47.78 | 60.42 | 71.74 | 83.71 | ||
12 | 31.20 | 40.78 | 50.03 | 53.02 | 61.63 | 69.19 | ||
Dominant P | 2 | 14.74 | 21.25 | 31.71 | 44.08 | 61.96 | 84.73 | |
4 | 16.93 | 23.22 | 30.66 | 41.56 | 51.82 | 65.73 | ||
6 | 17.85 | 24.70 | 30.51 | 37.91 | 46.17 | 59.19 | ||
8 | 25.12 | 33.38 | 42.34 | 50.66 | 59.03 | 70.64 | ||
10 | 30.72 | 38.78 | 46.42 | 54.00 | 63.82 | 73.47 | ||
12 | 32.47 | 40.64 | 49.22 | 57.69 | 65.36 | 73.28 | ||
Dominant S | 2 | 14.84 | 20.96 | 32.30 | 45.63 | 60.52 | 84.44 | |
4 | 17.17 | 23.37 | 32.06 | 42.02 | 49.55 | 64.90 | ||
6 | 18.56 | 24.53 | 30.68 | 36.99 | 45.52 | 54.41 | ||
8 | 24.99 | 33.62 | 41.27 | 49.82 | 57.57 | 67.14 | ||
10 | 28.80 | 39.37 | 48.03 | 52.45 | 59.35 | 69.27 | ||
12 | 31.11 | 36.81 | 44.94 | 51.85 | 59.18 | 64.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, A.R.; Matos, M.A.; Rocha, A.M.A.C.; Costa, L.A.; Varela, L.R. A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times. Mathematics 2022, 10, 2431. https://doi.org/10.3390/math10142431
Antunes AR, Matos MA, Rocha AMAC, Costa LA, Varela LR. A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times. Mathematics. 2022; 10(14):2431. https://doi.org/10.3390/math10142431
Chicago/Turabian StyleAntunes, Ana Rita, Marina A. Matos, Ana Maria A. C. Rocha, Lino A. Costa, and Leonilde R. Varela. 2022. "A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times" Mathematics 10, no. 14: 2431. https://doi.org/10.3390/math10142431
APA StyleAntunes, A. R., Matos, M. A., Rocha, A. M. A. C., Costa, L. A., & Varela, L. R. (2022). A Statistical Comparison of Metaheuristics for Unrelated Parallel Machine Scheduling Problems with Setup Times. Mathematics, 10(14), 2431. https://doi.org/10.3390/math10142431