A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations
Abstract
:1. Introduction
2. Cauchy-Type Systems of Singular Integro-Differential Equations
3. Shifted Legendre Polynomials and Development of the Method
4. Convergence Analysis
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, K. The Numerical Solution of Integral Equations of the Second Kind; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Atkinson, K.E.; Han, W. Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Grzymkowski, R.; Pleszczyński, M. Application of the Taylor Transformation to the Systems of Ordinary Differential Equations. In Information and Software Technologies; Damaševičius, R., Vasiljevienė, G., Eds.; ICIST 2018. Communications in Computer and Information Science; Springer: Cham, Switzerland, 2018; Volume 920. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Pleszczyński, M. Comparison of the Selected Methods Used for Solving the Ordinary Differential Equations and Their Systems. Mathematics 2022, 10, 306. [Google Scholar] [CrossRef]
- Hetmaniok, E.; Pleszczyński, M.; Khan, Y. Solving the Integral Differential Equations with Delayed Argument by Using the DTM Method. Sensors 2022, 22, 4124. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, M.V. Riemann-Liouville operator in weighted Lp spaces via the Jacobi series expansion. Axioms 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Kukushkin, M.V. On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms 2020, 9, 81. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On Solvability of the Sonin-Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 77. [Google Scholar] [CrossRef]
- Muskhelishvili, N.I. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics; Dover Books on Mathematics; Dover Publications: Mineola, NY, USA, 1953. [Google Scholar]
- Parts, I.; Pedas, A.; Tamme, E. Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 2005, 43, 1897–1911. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E. Spline collocation method for integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 2006, 197, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 2008, 213, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Product integration for weakly singular integro-differential equations. Math. Model. Anal. 2011, 16, 153–172. [Google Scholar] [CrossRef]
- Dauylbayev, M.K.; Uaissov, A.B. Asymptotic behavior of the solutions of boundary-value problems for singularly perturbed integro-differential Equations. Ukr. Math. J. 2020, 71, 1677–1691. [Google Scholar] [CrossRef]
- Dauylbayev, M.K.; Uaissov, A.B. Integral boundary-value problem with initial jumps for a singularly perturbed system of integro-differential equations. Chaos Solitons 2020, 141, 110328. [Google Scholar] [CrossRef]
- Assanova, A.T.; Nurmukanbet, S.N. A solvability of a problem for a Fredholm integro-differential equation with weakly singular kernel. Lobachevskii J. Math. 2022, 43, 182–191. [Google Scholar] [CrossRef]
- Jafari, H.; Nemati, S.; Ganji, R.M. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations. Adv. Differ. Equ. 2021, 2021, 435. [Google Scholar] [CrossRef] [PubMed]
- Yang, H. Huaijun Yang Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation. Appl. Math. Lett. 2022, 128, 107872. [Google Scholar] [CrossRef]
- Ahues, M.; Largillier, A.; Limaye, B.V. Spectral Computations for Bounded Operators; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Ahues, M.; Amosove, A.; Largillier, A.; Titaud, O. Lp Error Estimates for Projection Approximations. Appl. Math. Lett. 2005, 18, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Mennouni, A. Airfoil polynomials for solving integro-differential equations with logarithmic kernel. Appl. Math. Comput. 2012, 218, 11947–11951. [Google Scholar]
- Araour, M.; Mennouni, A. A New Procedures for Solving Two Classes of Fuzzy Singular Integro-Differential Equations: Airfoil Collocation Methods. Int. J. Appl. Comput. Math. 2022, 8, 1–23. [Google Scholar] [CrossRef]
- Mennouni, A. A projection method for solving Cauchy singular integro-differential equations. Appl. Math. Lett. 2012, 25, 986–989. [Google Scholar] [CrossRef] [Green Version]
- Mennouni, A. Two projection methods for skew-hermitian operator equations. Math. Comput. Model. 2012, 55, 1649–1654. [Google Scholar] [CrossRef]
- Mennouni, A. A new efficient strategy for solving the system of Cauchy integral equations via two projection methods. Transylv. J. Math. Mech. 2022, 14, 63–71. [Google Scholar]
n | ||
---|---|---|
3 | 3.182 × 10 | 4.100 × 10 |
5 | 4.555 × 10 | 1.776 × 10 |
9 | 1.000 × 10 | 3.505 × 10 |
13 | 4.472 × 10 | 2.264 × 10 |
18 | 4.960 × 10 | 3.06 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althubiti, S.; Mennouni, A. A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations. Mathematics 2022, 10, 2694. https://doi.org/10.3390/math10152694
Althubiti S, Mennouni A. A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations. Mathematics. 2022; 10(15):2694. https://doi.org/10.3390/math10152694
Chicago/Turabian StyleAlthubiti, Saeed, and Abdelaziz Mennouni. 2022. "A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations" Mathematics 10, no. 15: 2694. https://doi.org/10.3390/math10152694
APA StyleAlthubiti, S., & Mennouni, A. (2022). A Novel Projection Method for Cauchy-Type Systems of Singular Integro-Differential Equations. Mathematics, 10(15), 2694. https://doi.org/10.3390/math10152694