Detection of Abnormal Cardiac Response Patterns in Cardiac Tissue Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Atrial Tissue Samples
2.1.1. Mouse Preparation
2.1.2. Atria Isolation
2.2. Mechanical Recordings
Electrical Stimulation Protocol
2.3. Synthetic Dataset
2.4. Architecture of Anomaly Detectors
2.4.1. Detector Based on an LSTM Network (D.1)
2.4.2. Autoencoder-Based Detector (D.2)
3. Results
3.1. Synthetic Data
3.2. Experimental Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindemann, B.; Fesenmayr, F.; Jazdi, N.; Weyrich, M. Anomaly Detection in Discrete Manufacturing Using Self-Learning Approaches. Procedia CIRP 2019, 79, 313–318. [Google Scholar] [CrossRef]
- Gupta, M.; Gao, J.; Aggarwal, C.C.; Han, J. Outlier Detection for Temporal Data: A Survey. IEEE Trans. Knowl. Data Eng. 2014, 26, 2250–2267. [Google Scholar] [CrossRef]
- Chandola, V.; Cheboli, D.; Kumar, V. Detecting Anomalies in a Time Series Database; Technical Report; University of Minnesota: Minneapolis, MN, USA, 2009. [Google Scholar]
- Hawkins, D.M. Identification of Outliers. Chapman and Hall: London—New York 1980, 188 S., £ 14, 50. Biom. J. 1987, 29, 198. [Google Scholar] [CrossRef]
- Keogh, E.; Lin, J.; Fu, A. HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November 2005; pp. 226–233. [Google Scholar]
- Lis, A.; Dworakowski, Z.; Czubak, P. An Anomaly Detection Method for Rotating Machinery Monitoring Based on the Most Representative Data. J. Vibroeng. 2021, 23, 861–876. [Google Scholar] [CrossRef]
- Yang, H.; Kan, C.; Liu, G.; Chen, Y. Spatiotemporal Differentiation of Myocardial Infarctions. IEEE Trans. Autom. Sci. Eng. 2013, 10, 938–947. [Google Scholar] [CrossRef]
- Yang, H. Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals. IEEE Trans. Biomed. Eng. 2011, 58, 339–347. [Google Scholar] [CrossRef]
- Li, H.; Boulanger, P. A Survey of Heart Anomaly Detection Using Ambulatory Electrocardiogram (ECG). Sensors 2020, 20, 1461. [Google Scholar] [CrossRef] [Green Version]
- Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the KDD Workshop, New York, NY, USA, 26 April 1994. [Google Scholar]
- Sivaraks, H.; Ratanamahatana, C.A. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery. Comput. Math. Methods Med. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chuah, M.C.; Fu, F. ECG Anomaly Detection via Time Series Analysis. In Frontiers of High Performance Computing and Networking ISPA Workshops; Parimala, T., Ed.; Springer: Berlin, Germany, 2007; pp. 123–135. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.D.; Le, Q.L.; Dang, T.K. HOT ASAX: A Novel Adaptive Symbolic Representation for Time Series Discords Discovery. In Lecture Notes in Computer Science; (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin, Germany, 2010; Volume 5990, pp. 113–121. ISBN 3642121446. [Google Scholar]
- Veeravalli, B.; Deepu, C.J.; Ngo, D. Real-Time, Personalized Anomaly Detection in Streaming Data for Wearable Healthcare Devices. In Handbook of Large-Scale Distributed Computing in Smart Healthcare; Khan, S.U., Zomaya, A.Y., Abbas, A., Eds.; Springer: Berlin, Germany, 2017; pp. 403–426. [Google Scholar] [CrossRef]
- Christov, I.; Gómez-Herrero, G.; Krasteva, V.; Jekova, I.; Gotchev, A.; Egiazarian, K. Comparative Study of Morphological and Time-Frequency ECG Descriptors for Heartbeat Classification. Med. Eng. Phys. 2006, 28, 876–887. [Google Scholar] [CrossRef]
- de Chazal, P.; Reilly, R.B. A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features. IEEE Trans. Biomed. Eng. 2006, 53, 2535–2543. [Google Scholar] [CrossRef]
- Llamedo, M.; Martínez, J.P. Heartbeat Classification Using Feature Selection Driven by Database Generalization Criteria. IEEE Trans. Biomed. Eng. 2011, 58, 616–625. [Google Scholar] [CrossRef]
- Gretton, A.; Smola, A.; Huang, J.; Schmittfull, M.; Borgwardt, K.; Schölkopf, B. Covariate Shift by Kernel Mean Matching. In Dataset Shift in Machine Learning; The MIT Press: Cambridge, MA, USA, 2008; pp. 131–160. [Google Scholar]
- Li, K.; Du, N.; Zhang, A. Detecting ECG Abnormalities via Transductive Transfer Learning. In Proceedings of the ACM International Conference on Bioinformatics, Computational Biology and Biomedicine-BCB’12, Orlando, FL, USA, 8–10 October 2012; pp. 210–217. [Google Scholar] [CrossRef]
- Ye, C.; Kumar, B.V.K.V.; Coimbra, M.T. Heartbeat Classification Using Morphological and Dynamic Features of ECG Signals. IEEE Trans. Biomed. Eng. 2012, 59, 2930–2941. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, J.; Luo, X.; Choi, K.-S.; Wu, X. Heartbeat Classification Using Disease-Specific Feature Selection. Comput. Biol. Med. 2014, 46, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.N.V.P.S.; Dhuli, R. Classification of ECG Heartbeats Using Nonlinear Decomposition Methods and Support Vector Machine. Comput. Biol. Med. 2017, 87, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Das, M.K.; Ari, S. Automatic ECG Arrhythmia Classification Using Dual Tree Complex Wavelet Based Features. AEU. Int. J. Electron. Commun. 2015, 69, 715–721. [Google Scholar] [CrossRef]
- Wess, M.; Manoj, P.D.S.; Jantsch, A. Neural Network Based ECG Anomaly Detection on FPGA and Trade-off Analysis. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans. Biomed. Eng. 2016, 63, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias. Sci. Rep. 2017, 7, 9270. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated Detection of Arrhythmias Using Different Intervals of Tachycardia ECG Segments with Convolutional Neural Network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Zhou, H.; Kan, C. Tensor-Based ECG Anomaly Detection toward Cardiac Monitoring in the Internet of Health Things. Sensors 2021, 21, 4173. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Zhang, Q.; Wei, X. Classification of ECG Signals Based on 1D Convolution Neural Network. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017; pp. 1–6. [Google Scholar]
- Bailly, R.; Malfante, M.; Allier, C.; Ghenim, L.; Mars, J. Deep Anomaly Detection Using Self-Supervised Learning: Application to Time Series of Cellular Data; IEEE Access: Porto, Portugal, 2021. [Google Scholar]
- Malhotra, P.; Vig, L.; Shroff, G.M.; Agarwal, P. Long Short Term Memory Networks for Anomaly Detection in Time Series; ESANN: Bruges, Belgium, 2015. [Google Scholar]
- McLachlan, G.; Peel, D. Finite Mixture Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; ISBN 9780471721185. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Wang, X. Bilateral LSTM: A Two-Dimensional Long Short-Term Memory Model With Multiply Memory Units for Short-Term Cycle Time Forecasting in Re-Entrant Manufacturing Systems. IEEE Trans. Ind. Inform. 2018, 14, 748–758. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 22 December 2015. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Olshausen, B.A.; Field, D.J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vis. Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Hinton, G.E. 3D Object Recognition with Deep Belief Nets. In Advances in Neural Information Processing Systems; Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2009; Volume 22. [Google Scholar]
- Coates, A.; Ng, A.Y. The Importance of Encoding versus Training with Sparse Coding and Vector Quantization. In Proceedings of the 28th International Conference on International Conference on Machine Learning, Washington, DC, USA, 28 June–2 July 2011; Omnipress: Madison, WI, USA, 2011; pp. 921–928. [Google Scholar]
- Zhao, X.; Yan, H.; Hu, Z.; Du, D. Deep Spatio-Temporal Sparse Decomposition for Trend Prediction and Anomaly Detection in Cardiac Electrical Conduction. IISE Trans. Healthc. Syst. Eng. 2022, 12, 150–164. [Google Scholar] [CrossRef]
Injection | Composition | Via |
---|---|---|
First | 0.03 mL sodium heparin 50% 0.3 mL sodium chloride heparin 0.9% | Intraperitoneal |
Second | 1 mg/kg medetomidine 75 mg/kg ketamine | Intraperitoneal |
Solution | Composition | Bubbles | pH | Temperature |
---|---|---|---|---|
Carboxygenated Krebs | 115.48 mM NaCl | 5% CO2 95% O2 | 7.4 | 37.5 °C |
4.61 mM KCl | ||||
1.16 mM MgSO4 | ||||
21.90 mM NaHCO3 | ||||
1.14 mM NaH2PO4 | ||||
2.50 mM CaCl2 | ||||
10.10 mM glucose |
Signal Type | Signal Description | Category | Anomalies Nanom | Repetitions Nrep |
---|---|---|---|---|
1. Normal signal | Normal contraction | Normal | 6 | x |
2. Lower amplitude | Phenomena of low amplitude contraction | Anomalous | 6 | x |
3. Higher amplitude | Phenomena of large amplitude contractions | Anomalous | 6 | x |
4. Missing pulse | Absence of contraction pulses | Anomalous | 1 | x |
5. Slow pulse decay | Periods of contraction with dynamics of slow decline | Anomalous | 1 | x |
6. Fast pulse decay | Periods of contraction with dynamics of fast decline | Anomalous | 1 | x |
7. Early or anticipated pulse | Periods of anticipated contraction | Anomalous | 1 | x |
8. Pause/block | Periods of absence of contraction pulses | Anomalous | 1 | 10 |
Part | Equation |
---|---|
Hidden state | |
Cell state (cell output) Cell state candidate | |
Input gate | |
Forget gate | |
Output gate |
Layer Name | Type | Activations | Learnables | States |
---|---|---|---|---|
1. Input | Sequence input | 1 | - | - |
2. BiLSTM 1 | BiLSTM | 520 | Input weights: 2080 × 1 Recurrent weights: 2080 × 260 Bias: 2080 × 1 | Hidden states: 520 × 1 Cell states: 520 × 1 |
3. RELU 1 | RELU | 520 | - | - |
4. BiLSTM 2 | BiLSTM | 320 | Input weights: 1280 × 520 Recurrent weights: 1280 × 160 Bias: 1280 × 1 | Hidden states: 320 × 1 Cell states: 320 × 1 |
5. RELU 2 | RELU | 320 | - | - |
6. BiLSTM 3 | BiLSTM | 520 | Input weights: 2080 × 320 Recurrent weights: 2080 × 260 Bias: 2080 × 1 | Hidden states: 520 × 1 Cell states: 520 × 1 |
7. RELU 3 | RELU | 520 | ||
8. Fully Connected | FC | 1 | Weights: 1 × 520 Bias: 1 × 1 | - |
9. Regression Layer | RL | 1 | Mean squared error | - |
Description | Parameter Name | Value |
---|---|---|
Optimization algorithm | Solver name | Adam |
First moment rate | Gradient decay factor | β1 = 0.9 |
Second moment rate | Squared gradient decay factor | β2 = 0.999 |
Epsilon | Epsilon | ε = 10−8 |
Maximum number of epochs | Max epochs | 30 |
Mini-batch size | Mini batch size | 10 |
Shuffle the data | Shuffle | Once |
Initial learning rate | Initial learnrate | α0 = 0.001 |
L2 regularization | L2 regularization | L2 = 0.0001 |
Description | Parameter Name | Value |
---|---|---|
Number of hidden nodes | Hidden size | 200 |
L2 regularization | L2 weight regularization | λ = 0.0001 |
Regularization of dispersion | Sparsity regularization | β = 0.0001 |
Sparsity proportion | Sparsity proportion | ρ = 0.1 |
Maximum number of epochs | Max epochs | 200 |
Loss function | Loss function | msesparse |
Activation function (encoder) | Encoder transfer function | logsig |
Activation function (decoder) | Decoder transfer function | logsig |
Signal Type | Sørensen–Dice Index (SDI) | |
---|---|---|
Autoencoder | LSTM | |
2. Lower amplitude | 0.55 | 0.83 |
3. Higher amplitude | 0.71 | 0.99 |
4. Missing pulse | 0.63 | 0.91 |
5. Slow pulse decay | 0.67 | 0.95 |
6. Fast pulse decay | 0.61 | 0.88 |
7. Early or anticipated pulse | 0.51 | 0.77 |
8. Pause/block | 0.61 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marimon, X.; Traserra, S.; Jiménez, M.; Ospina, A.; Benítez, R. Detection of Abnormal Cardiac Response Patterns in Cardiac Tissue Using Deep Learning. Mathematics 2022, 10, 2786. https://doi.org/10.3390/math10152786
Marimon X, Traserra S, Jiménez M, Ospina A, Benítez R. Detection of Abnormal Cardiac Response Patterns in Cardiac Tissue Using Deep Learning. Mathematics. 2022; 10(15):2786. https://doi.org/10.3390/math10152786
Chicago/Turabian StyleMarimon, Xavier, Sara Traserra, Marcel Jiménez, Andrés Ospina, and Raúl Benítez. 2022. "Detection of Abnormal Cardiac Response Patterns in Cardiac Tissue Using Deep Learning" Mathematics 10, no. 15: 2786. https://doi.org/10.3390/math10152786
APA StyleMarimon, X., Traserra, S., Jiménez, M., Ospina, A., & Benítez, R. (2022). Detection of Abnormal Cardiac Response Patterns in Cardiac Tissue Using Deep Learning. Mathematics, 10(15), 2786. https://doi.org/10.3390/math10152786