Circumventing Ill-Conditioning Arising from Using Linear Multistep Methods in Approximating the Solution of Initial Value Problems
Abstract
:1. Introduction
2. Materials and Methods
3. Convergence Analysis
3.1. Underdetermined System
- 1.
- Let be of full rank.
- 2.
- Find the reduced QR factorisation of such that where denotes the transpose of .
- 3.
- Solve for .
- 4.
- Compute .
3.2. Optimal Choices of Grid Points
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IVP | Initial value problem |
LMM | Linear multistep methods |
References
- Shampine, L.F. Ill-conditioned matrices and the integration of stiff ODEs. J. Comput. Appl. Math. 1993, 48, 279–292. [Google Scholar] [CrossRef]
- Akinola, R.O.; Ajibade, K.J. A Proof of the Non-Singularity of the D Matrix Used in Deriving the two–Step Butcher’s Hybrid Scheme for the Solution of Initial Value Problems. J. Appl. Math. Phys. 2021, 9, 3177–3201. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Richard Stratton: Boston, MA, USA, 2011. [Google Scholar]
- Ortega, J.M. Numerical Analysis; A Second Course; Academic Press: New York, NY, USA, 1972; Volume 201, p. 33. [Google Scholar]
- Golub, G.H.; Wilkinson, J.H. Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Rev. 1976, 18, 578–619. [Google Scholar] [CrossRef]
- Peters, G.; Wilkinson, J.H. Inverse iteration, ill-conditioned equations and Newton’s method. SIAM Rev. 1979, 21, 339–360. [Google Scholar] [CrossRef]
- Farooq, M.; Salhi, A. Improving the solvability of Ill–conditioned systems of linear equations by reducing the condition number of their matrices. J. Korean Math. Soc. 2011, 48, 939–952. [Google Scholar] [CrossRef]
- Douglas, C.C.; Lee, L.; Yeung, M. On Solving Ill Conditioned Linear Systems. Procedia Comput. Sci. 2016, 80, 941–950. [Google Scholar] [CrossRef]
- Sirisina, U.W.; Kumleng, G.M.; Yahaya, Y.A. A New Butcher Type two-Step Block Hybrid Multistep Method for Accurate and Efficient Parallel Solution of Ordinary Differential Equations. Abacus Math. Ser. 2004, 31, 1–7. [Google Scholar]
- Akinola, R.O. An Accurate Implementation of the Two-Step Butcher’s Hybrid Scheme on Initial Value Problems. Bachelor’s Thesis, University of Jos, Jos, Nigeria, 2001. [Google Scholar]
- Demmel, J.W. Applied Numerical Linear Algebra; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Chen, W.; Wu, W.X.; Teng, Z.D. Complete Dynamics in a Nonlocal Dispersal Two-Strain SIV Epidemic Model with Vaccinations and Latent Delays. Appl. Comput. Math. 2020, 19, 360–391. [Google Scholar]
- Kamoh, N.M.; Gyemang, D.G.; Soomiyol, M.C. On One Justification on the Use of Hybrids for the Solution of First Order Initial Value Problems of Ordinary Differential Equations. Pure Appl. Math. J. 2017, 6, 137–143. [Google Scholar]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. On the solutions of Fractional Differential Equations via Geraghty Type Hybrid Contractions. Appl. Comput. Math. 2021, 20, 313–333. [Google Scholar]
- Adee, S.O.; Atabo, V.O. Improved two-Point Block Backward Differentiation Formulae for Solving First Order Stiff Initial Value Problems of Ordinary Differential Equations. Niger. Ann. Pure Appl. Sci. 2020, 3, 200–209. [Google Scholar] [CrossRef]
- Ozyapici, A.; Karanfiller, T. New integral operator for solutions of differential equations. TWMS J. Pure Appl. Math. 2020, 11, 131–143. [Google Scholar]
- Shokri, A. The symmetric P-stable Hybrid Obrenchkoff Methods for the numerical solution of second order IVPs. TWMS J. Pure Appl. Math. 2012, 5, 28–35. [Google Scholar]
- Shokri, A. An explicit trigonometrically fitted ten-step method with phase-lag of order infinity for the numerical solution of the radial Schrodinger equation. J. Appl. Comput. Math. 2015, 14, 63–74. [Google Scholar]
- Shokri, A.; Tahmourasi, M. A new two-step Obrenchkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions. Iran. J. Math. Chem. 2017, 8, 137–159. [Google Scholar]
- Sunday, J.; Chigozie, C.; Omole, E.O. A pair of three-step hybrid block methods for the solutions of linear and non-linear first order systems. Eur. J. Math. Stat. 2022, 3, 13–23. [Google Scholar] [CrossRef]
- Omole, E.O.; Jeremiah, O.A.; Adoghe, L.O.A. A class of Continuous Implicit Seventh–eight method for solving y′=f(x,y) using power series. Int. J. Chem. Math. Phys. 2020, 4, 39–50. [Google Scholar] [CrossRef]
- Mohammed, U.; Adeniyi, R.B. A Three Step Implicit Hybrid Linear Multistep Method for the Solution of Third Order Ordinary Differential Equations. Gen. Math. Notes 2014, 25, 62–74. [Google Scholar]
- Mohammed, U.; Jiya, M.; Mohammed, A.A. A class of six step block method for solution of general second order ordinary differential equations. Pac. J. Sci. Technol. 2010, 11, 273–277. [Google Scholar]
- Mohammed, U. A class of implicit five step block method for general second order ordinary differential equations. J. Niger. Math. Soc. 2010, 30, 25–39. [Google Scholar]
- Awoyemi, D.O. A P-stable linear multistep method for solving general third order of ordinary differential equations. Int. J. Comput. Math. 2003, 80, 985–991. [Google Scholar] [CrossRef]
- Awoyemi, D.O.; Idowu, O. A class hybrid collocation methods for third order of ordinary differential equations. Int. J. Comput. Math. 2005, 82, 1287–1293. [Google Scholar] [CrossRef]
- Awoyemi, D.O.; Kayode, S.J.; Adoghe, L.O. A four–point fully implicit method for numerical integration of third-order ordinary differential equations. Int. J. Phys. Sc. 2014, 9, 7–12. [Google Scholar] [CrossRef]
- Sagir, A.M. On the approximate solution of continuous coefficients for solving third order ordinary differential equations. Int. J. Math. Comput. Sci. Eng. 2014, 8, 39–43. [Google Scholar]
- Badmus, A.M.; Yahaya, Y.A. Some multi derivative hybrid block methods for solution of general third order ordinary differential equations. Niger. J. Sci. Res. 2009, 8, 103–107. [Google Scholar]
- Aliev, F.A.; Aliyev, N.A.; Hajiyeva, N.S.; Mahmudov, N.I. Some Mathematical Problems and their solutions for the oscillating systems with Liquid Dampers: A Review. Appl. Comput. Math. 2021, 20, 339–365. [Google Scholar]
- Fatunla, S.O. A class of block methods for second order IVPs. Int. J. Comput. Math. 1994, 55, 119–133. [Google Scholar] [CrossRef]
- Bouazza, Z.; Souid, M.S.; Günerhan, H. Multiterm boundary value problem of Caputo fractional differential equations of variable order. Adv. Differ. Equ. 2021, 2021, 400. [Google Scholar] [CrossRef]
- Hossen, B.; Roshid1, H.; Ali, Z. Modified Double Sub-equation Method for Finding Complexiton Solutions to the (1 + 1) Dimensional Nonlinear Evolution Equations. Int. J. Appl. Comput. Math. 2017, 3, 679–697. [Google Scholar] [CrossRef]
- Adee, S.O.; Onumanyi, P.; Sirisena, U.W.W.; Yahaya, Y.A. Note on starting numerov method more accurately by a hybrid formula of order four for an initial value problem. J. Comput. Appl. Math. 2005, 175, 369–373. [Google Scholar]
- Jator, S.N. A sixth order linear multistep method for the direct solution of y′′′=f(x,y,y′). Int. J. Pure Appl. Math. 2007, 40, 457–472. [Google Scholar]
- Jator, S.N. On the numerical integration of third order boundary value problems by a linear multistep method. Int. J. Pure Appl. Math. 2008, 46, 375–388. [Google Scholar]
- Jator, S.N.; Li, J. A self-starting linear multistep method for a direct solution of the general second order initial value problem. Int. J. Comput. Math. 2007, 86, 827–836. [Google Scholar] [CrossRef]
- Jator, S.N. Multiple finite difference methods for solving third order ordinary differential equations. Int. J. Pure Appl. Math. 2008, 43, 253–265. [Google Scholar]
- Olabode, B.T.; Yusuph, Y. A new block method for special third order ordinary differential equations. J. Math. Stat. 2009, 5, 167–170. [Google Scholar] [CrossRef]
- Yahaya, Y.A.; Adegboye, Z.A. Construction and Implementation of a 4-Step Implicit Collocation Method for Solution of First and Second Order ODEs. Pac. J. Sci. Technol. 2012, 13, 159–165. [Google Scholar]
- Henrici, P. Discrete Variable Methods in Ordinary Differential Equations; John Wiley: New York, NY, USA, 1962; p. 407. [Google Scholar]
- Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
h | Is D (Non)Singular? | |
---|---|---|
0.001 | 2.3250 | Singular |
0.010 | 2.3250 | Singular |
0.050 | 1.1353 | Nearly singular |
0.100 | 2.3250 | Nearly singular |
0.200 | 4.7616 | Nonsingular |
0.500 | 1.1353 | Nonsingular |
Size of matrix | ||||
0.001 | 481.73 | 30.52 | 6.95 | 9.79 |
0.010 | 484.32 | 30.28 | 7.11 | 9.84 |
0.050 | 495.13 | 30.43 | 7.82 | 10.12 |
0.100 | 506.87 | 30.58 | 8.74 | 10.52 |
0.200 | 1041.90 | 64.66 | 21.43 | 22.88 |
0.500 | 540.40 | 43.81 | 18.13 | 14.87 |
Size of matrix | ||||
0.001 | 484.04 | 30.45 | 7.09 | 9.84 |
0.010 | 504.68 | 30.61 | 8.55 | 10.43 |
0.050 | 540.51 | 42.62 | 16.84 | 14.29 |
0.100 | 523.26 | 68.44 | 28.35 | 19.30 |
0.200 | 494.89 | 120.17 | 46.31 | 26.15 |
0.500 | 636.20 | 259.00 | 62.22 | 31.70 |
Size of matrix | ||||
0.001 | 487.14 | 30.36 | 7.28 | 9.91 |
0.010 | 524.45 | 32.41 | 10.78 | 11.48 |
0.050 | 517.65 | 71.35 | 30.77 | 20.29 |
0.100 | 496.70 | 132.23 | 49.06 | 27.11 |
0.200 | 601.39 | 237.34 | 61.31 | 31.35 |
0.500 | 943.79 | 401.77 | 63.53 | 32.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinola, R.O.; Shokri, A.; Yao, S.-W.; Kutchin, S.Y. Circumventing Ill-Conditioning Arising from Using Linear Multistep Methods in Approximating the Solution of Initial Value Problems. Mathematics 2022, 10, 2910. https://doi.org/10.3390/math10162910
Akinola RO, Shokri A, Yao S-W, Kutchin SY. Circumventing Ill-Conditioning Arising from Using Linear Multistep Methods in Approximating the Solution of Initial Value Problems. Mathematics. 2022; 10(16):2910. https://doi.org/10.3390/math10162910
Chicago/Turabian StyleAkinola, Richard Olatokunbo, Ali Shokri, Shao-Wen Yao, and Stephen Yakubu Kutchin. 2022. "Circumventing Ill-Conditioning Arising from Using Linear Multistep Methods in Approximating the Solution of Initial Value Problems" Mathematics 10, no. 16: 2910. https://doi.org/10.3390/math10162910
APA StyleAkinola, R. O., Shokri, A., Yao, S. -W., & Kutchin, S. Y. (2022). Circumventing Ill-Conditioning Arising from Using Linear Multistep Methods in Approximating the Solution of Initial Value Problems. Mathematics, 10(16), 2910. https://doi.org/10.3390/math10162910