Multi-Objective Instantaneous Center of Rotation Optimization Using Sensors Feedback for Navigation in Self-Reconfigurable Pavement Sweeping Robot
Abstract
:1. Introduction
- Kinematics modeling for the reconfiguring pavement cleaning and maintenance robot.
- Considering the region within the robot footprint for the selection of instantaneous center of rotation (ICR) in order to avoid collision in constrained spaces.
- Optimal selection of ICR for the static rotation to get the heading angle of the robot where there is no collision with the obstacles in the form of constrained spaces environment or standing pedestrians.
- Experimental demonstration of implemented ICR selection approach for reconfigurable robot performing rotation to navigate through tight spaces namely in four scenarios, (S1) Rotation while avoiding structural obstacles, (S2) Rotation while avoiding pedestrians, (S3) Rotation on a wide pavement, and (S4) No rotation possible, are shown in Figure 1.
2. Robot Architecture
2.1. Mechanical Design
2.2. Steering Unit Design
2.3. Electrical System and Sensors
2.4. System Design
3. Robot Kinematics
3.1. Kinematic Model
3.2. Instantaneous Center of Rotation
- Mode 1: When all or robot performs a straight line movement. When or , it moves along the robot y-axis. When or , it moves along the robot x-axis.
- Mode 2: When all , robot performs a static rotation about the geometric center of the robot.
- Mode 3: When all or , where and are real constants, robot performs a circular motion where the ICR is perpendicular or parallel to the robot orientation.
- Mode 4: When all , where and are real constants, the robot performs a circular motion where the ICR can be anywhere in space except the position of its wheels.
4. Multi-Objective Optimization for ICR Selection in Local Planner
4.1. Identification of Feasible ICR Space
4.1.1. Local Cost Map and Robot Footprint
4.1.2. Panthera Reconfiguration State and Robot Footprint
4.1.3. ICR Trajectory Collision Check
4.2. Minimising Objective Function Using Gradient Descent
4.2.1. Steering Angle Function
4.2.2. Clearance Function
4.2.3. Distance Function
5. Experimental Results and Discussion
5.1. Experiments
5.1.1. Scenario 1: Rotation While Avoiding Structural Obstacles
5.1.2. Scenario 2: Rotation while Avoiding Pedestrians
5.1.3. Scenario 3: Rotation on a Wide Pavement
5.1.4. Scenario 4: No Rotation Possible
5.2. Discussion
6. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Panthera Dynamics Model
References
- Hargadine, C.S. Mobile Robot Navigation and Obstacle Avoidance in Unstructured Outdoor Environments; Technical Report; Naval Postgraduate School: Monterey, CA, USA, 2017. [Google Scholar]
- Pandey, A.; Pandey, S.; Parhi, D. Mobile robot navigation and obstacle avoidance techniques: A review. Int. Rob. Auto. J. 2017, 2, 00022. [Google Scholar] [CrossRef]
- Borenstein, J.; Koren, Y. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man. Cybern. 1989, 19, 1179–1187. [Google Scholar] [CrossRef]
- Mingnuo. Mingnuo Clean. 2021. Available online: http://www.mingnuoclean.com/index.html (accessed on 30 August 2022).
- HuaXinTech. Ride on Auto Sweeper Machine Vacuum. 2021. Available online: https://www.yangziindustry.com/Products/ (accessed on 19 May 2022).
- Johnston. Johnston Sweepers. 2021. Available online: https://www.buchermunicipal.com/int/johnston-sweepers-0 (accessed on 30 August 2022).
- Widyotriatmo, A.; Hong, B.; Hong, K.S. Predictive navigation of an autonomous vehicle with nonholonomic and minimum turning radius constraints. J. Mech. Sci. Technol. 2009, 23, 381–388. [Google Scholar] [CrossRef]
- Antonelli, D.; Nesi, L.; Pepe, G.; Carcaterra, A. A novel approach in Optimal trajectory identification for Autonomous driving in racetrack. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 3267–3272. [Google Scholar]
- Pérez-Morales, D.; Kermorgant, O.; Domínguez-Quijada, S.; Martinet, P. Multi-Sensor-Based Predictive Control for Autonomous Parking in Presence of Pedestrians. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 406–413. [Google Scholar]
- Tan, N.; Hayat, A.A.; Elara, M.R.; Wood, K.L. A framework for taxonomy and evaluation of self-reconfigurable robotic systems. IEEE Access 2020, 8, 13969–13986. [Google Scholar] [CrossRef]
- Prabakaran, V.; Elara, M.R.; Pathmakumar, T.; Nansai, S. Floor cleaning robot with reconfigurable mechanism. Autom. Constr. 2018, 91, 155–165. [Google Scholar] [CrossRef]
- Hayat, A.A.; Karthikeyan, P.; Vega-Heredia, M.; Elara, M.R. Modeling and assessing of self-reconfigurable cleaning robot hTetro based on energy consumption. Energies 2019, 12, 4112. [Google Scholar] [CrossRef]
- Cheng, K.P.; Mohan, R.E.; Nhan, N.H.K.; Le, A.V. Multi-objective genetic algorithm-based autonomous path planning for hinged-tetro reconfigurable tiling robot. IEEE Access 2020, 8, 121267–121284. [Google Scholar] [CrossRef]
- Lakshmanan, A.K.; Mohan, R.E.; Ramalingam, B.; Le, A.V.; Veerajagadeshwar, P.; Tiwari, K.; Ilyas, M. Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Autom. Constr. 2020, 112, 103078. [Google Scholar] [CrossRef]
- Muthugala, M.V.J.; Samarakoon, S.B.P.; Elara, M.R. Toward energy-efficient online Complete Coverage Path Planning of a ship hull maintenance robot based on Glasius Bio-inspired Neural Network. Expert Syst. Appl. 2021, 187, 115940. [Google Scholar] [CrossRef]
- Le, A.V.; Veerajagadheswar, P.; Kyaw, P.T.; Muthugala, M.V.J.; Elara, M.R.; Kuma, M.; Nhan, N.H.K. Towards optimal hydro-blasting in reconfigurable climbing system for corroded ship hull cleaning and maintenance. Expert Syst. Appl. 2021, 170, 114519. [Google Scholar] [CrossRef]
- Le, A.V.; Parween, R.; Elara Mohan, R.; Nhan, N.H.K.; Enjikalayil Abdulkader, R. Optimization complete area coverage by reconfigurable hTrihex tiling robot. Sensors 2020, 20, 3170. [Google Scholar] [CrossRef]
- Le, A.V.; Veerajagadheswar, P.; Thiha Kyaw, P.; Elara, M.R.; Nhan, N.H.K. Coverage Path Planning Using Reinforcement Learning-Based TSP for hTetran—A Polyabolo-Inspired Self-Reconfigurable Tiling Robot. Sensors 2021, 21, 2577. [Google Scholar] [CrossRef]
- Le, A.V.; Nhan, N.H.K.; Mohan, R.E. Evolutionary Algorithm-Based Complete Coverage Path Planning for Tetriamond Tiling Robots. Sensors 2020, 20, 445. [Google Scholar] [CrossRef]
- Vega-Heredia, M.; Mohan, R.E.; Wen, T.Y.; Siti’Aisyah, J.; Vengadesh, A.; Ghanta, S.; Vinu, S. Design and modelling of a modular window cleaning robot. Autom. Constr. 2019, 103, 268–278. [Google Scholar] [CrossRef]
- Tun, T.T.; Huang, L.; Mohan, R.E.; Matthew, S.G.H. Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot. Autom. Constr. 2019, 106, 102796. [Google Scholar] [CrossRef]
- Shi, Y.; Elara, M.R.; Le, A.V.; Prabakaran, V.; Wood, K.L. Path tracking control of self-reconfigurable robot hTetro with four differential drive units. IEEE Robot. Autom. Lett. 2020, 5, 3998–4005. [Google Scholar] [CrossRef]
- Hayat, A.A.; Parween, R.; Elara, M.R.; Parsuraman, K.; Kandasamy, P.S. Panthera: Design of a Reconfigurable Pavement Sweeping Robot. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7346–7352. [Google Scholar]
- Yi, L.; Gómez, B.F.; Ramalingam, B.; Rayguru, M.M.; Elara, M.R.; Hayat, A.A. Self-reconfigurable robot vision pipeline for safer adaptation to varying pavements width and surface conditions. Sci. Rep. 2022, 12, 14557. [Google Scholar] [CrossRef]
- Yim, S. Comparison among active front, front independent, 4-wheel and 4-wheel independent steering systems for vehicle stability control. Electronics 2020, 9, 798. [Google Scholar] [CrossRef]
- Qiu, H.; Liang, S.; Qi, Z.; Qin, H. A novel design of an in-situ steering for a 4-wheel independent steering in a 4-in-wheel-motor Drive Electric Vehicle. In Proceedings of the 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 28–30 November 2012; pp. 42–45. [Google Scholar]
- Hang, P.; Chen, X. Towards Autonomous Driving: Review and Perspectives on Configuration and Control of Four-Wheel Independent Drive/Steering Electric Vehicles. Actuators 2021, 10, 184. [Google Scholar] [CrossRef]
- Nah, J.; Yim, S. Vehicle stability control with four-wheel independent braking, drive and steering on in-wheel motor-driven electric vehicles. Electronics 2020, 9, 1934. [Google Scholar] [CrossRef]
- Hayat, A.A.; Yi, L.; Kalimuthu, M.; Elara, M.; Wood, K.L. Reconfigurable robotic system design with application to cleaning and maintenance. J. Mech. Des. 2022, 144, 063305. [Google Scholar] [CrossRef]
- Manimuthu, M.; Hayat, A.A.; Elara, M.R.; Wood, K. Transformation design Principles as enablers for designing Reconfigurable Robots. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Virtual, 17 August 2021; pp. 1–12. [Google Scholar]
- Ottaviano, E.; Rea, P. Design and operation of a 2-DOF leg–wheel hybrid robot. Robotica 2013, 31, 1319–1325. [Google Scholar] [CrossRef]
- Ma, F.; Shi, J.; Yang, Y.; Li, J.; Dai, K. ACK-MSCKF: Tightly-Coupled Ackermann Multi-State Constraint Kalman Filter for Autonomous Vehicle Localization. Sensors 2019, 19, 4816. [Google Scholar] [CrossRef]
- Din, Z.M.U.; Razzaq, W.; Arif, U.; Ahmad, W.; Muhammad, W. Real time Ackerman steering angle control for self-driving car autonomous navigation. In Proceedings of the 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, 10–11 December 2019; pp. 1–4. [Google Scholar]
- Shojaei, K.; Shahri, A.M.; Tarakameh, A.; Tabibian, B. Adaptive trajectory tracking control of a differential drive wheeled mobile robot. Robotica 2011, 29, 391–402. [Google Scholar] [CrossRef]
- Shih, C.L.; Lin, L.C. Trajectory Planning and Tracking Control of a Differential-Drive Mobile Robot in a Picture Drawing Application. Robotics 2017, 6, 17. [Google Scholar] [CrossRef]
- Malu, S.K.; Majumdar, J. Kinematics, localization and control of differential drive mobile robot. Glob. J. Res. Eng. 2014, 14, 1–9. [Google Scholar]
- Salem, F.A. Dynamic and kinematic models and control for differential drive mobile robots. Int. J. Curr. Eng. Technol. 2013, 3, 253–263. [Google Scholar]
- Jun, J.Y.; Hua, M.D.; Benamar, F. A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 4554–4559. [Google Scholar]
- Xu, H.; Xue, K.; Wang, P.; Marie, B.S.; Wei, R.; Jin, B. Maneuver Control and Kinematical Energy Analysis of a Robot Based on Instantaneous Center of Rotation. In Proceedings of the 2006 1ST IEEE International Conference on E-Learning in Industrial Electronics, Hammamet, Tunisia, 18–20 December 2006; pp. 101–106. [Google Scholar]
- Xu, H.; da Wang, W.; Sidibe, M.B. Maneuver Algorithm for Mobile Robot with Four Steered Propulsive Wheels. In Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, 16–19 February 2007; pp. 151–157. [Google Scholar]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef]
- Choset, H.; Pignon, P. Coverage Path Planning: The Boustrophedon Cellular Decomposition. In Field and Service Robotics; Zelinsky, A., Ed.; Springer: London, UK, 1998; pp. 203–209. [Google Scholar]
- Yan, J.; Diakité, A.A.; Zlatanova, S.; Aleksandrov, M. Finding outdoor boundaries for 3D space-based navigation. Trans. GIS 2020, 24, 371–389. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Y.; Guo, S.; Bai, J.; Shu, Q. Sensing system of environmental perception technologies for driverless vehicle: A review of state of the art and challenges. Sens. Actuators Phys. 2021, 319, 112566. [Google Scholar] [CrossRef]
- Dai, P.; Taghia, J.; Lam, S.; Katupitiya, J. Integration of Sliding Mode Based Steering Control and PSO Based Drive Force Control for a 4WS4WD Vehicle; Springer: Berlin/Heidelberg, Germany, 2018; Volume 42, pp. 1573–7527. [Google Scholar]
- Huang, S.J.; Shiao, Y.W. 2D path control of four omni wheels mobile platform with compass and gyroscope sensors. Sens. Actuators A Phys. 2015, 234, 302–310. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Limpert, N.; Schiffer, S.; Ferrein, A. A local planner for Ackermann-driven vehicles in ROS SBPL. In Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Port Elizabeth, South Africa, 26–27 November 2015; pp. 172–177. [Google Scholar]
- Missura, M.; Bennewitz, M. Predictive collision avoidance for the dynamic window approach. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8620–8626. [Google Scholar]
- Le, A.V.; Prabakaran, V.; Sivanantham, V.; Mohan, R.E. Modified a-star algorithm for efficient coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor. Sensors 2018, 18, 2585. [Google Scholar] [CrossRef]
- Khan, A.R.; Khan, A.T.; Salik, M.; Bakhsh, S. An Optimally Configured HP-GRU Model Using Hyperband for the Control of Wall Following Robot. Int. J. Robot. Control Syst. 2021, 1, 66–74. [Google Scholar] [CrossRef]
- Madi, S.; Baba-Ali, R. Classification techniques for wall-following robot navigation: A comparative study. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 1–3 September 2018; pp. 98–107. [Google Scholar]
- Suwoyo, H.; Tian, Y.; Deng, C.; Adriansyah, A. Improving a wall-following robot performance with a PID-genetic algorithm controller. In Proceedings of the 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Malang, Indonesia, 16–18 October 2018; pp. 314–318. [Google Scholar]
- Carelli, R.; Freire, E.O. Corridor navigation and wall-following stable control for sonar-based mobile robots. Robot. Auton. Syst. 2003, 45, 235–247. [Google Scholar] [CrossRef]
- Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Yi, L.; Le, A.V.; Ramalingam, B.; Hayat, A.A.; Elara, M.R.; Minh, T.H.Q.; Gómez, B.F.; Wen, L.K. Locomotion with Pedestrian Aware from Perception Sensor by Pavement Sweeping Reconfigurable Robot. Sensors 2021, 21, 1745. [Google Scholar] [CrossRef]
- Rayguru, M.M.; Mohan, R.E.; Parween, R.; Yi, L.; Le, A.V.; Roy, S. An Output Feedback Based Robust Saturated Controller Design for Pavement Sweeping Self-Reconfigurable Robot. IEEE/ASME Trans. Mechatronics 2021, 26, 1236–1247. [Google Scholar] [CrossRef]
- Roy, S.; Nandy, S.; Ray, R.; Shome, S.N. Robust path tracking control of nonholonomic wheeled mobile robot: Experimental validation. Int. J. Control. Autom. Syst. 2015, 13, 897–905. [Google Scholar] [CrossRef]
Experiment/ | OF | Weights | SA | Clearance | Distance | Mo |
---|---|---|---|---|---|---|
Scenario | , , | h | ||||
1 | Steering Angle | 1, 0, 0 | 2.57 | 1.74 | 0.21 | 2.57 |
Clearance | 0, 1, 0 | 3.41 | 1.74 | 0.20 | −1.74 | |
Distance | 0, 0, 1 | 3.87 | 2.27 | 0.11 | 0.11 | |
Multi-objective | 1, 1, 1 | 2.95 | 1.92 | 0.16 | 1.20 | |
2 | Steering Angle | 1, 0, 0 | 2.57 | 2.27 | 0.66 | 2.57 |
Clearance | 0, 1, 0 | 3.86 | 4.89 | 0.30 | −4.89 | |
Distance | 0, 0, 1 | 4.17 | 1.74 | 0.05 | 0.05 | |
Multi-objective | 1, 1, 1 | 4.09 | 4.71 | 0.15 | −0.48 | |
3 | Steering Angle | 1, 0, 0 | 2.33 | 1.92 | 0.88 | 2.33 |
Clearance | 0, 1, 0 | 4.24 | 6.28 | 0.16 | −6.28 | |
Distance | 0, 0, 1 | 4.18 | 6.28 | 0.0 | 0.0 | |
Multi-objective | 1, 1, 1 | 4.18 | 6.28 | 0.0 | −2.10 | |
4 | Steering Angle | 1, 0, 0 | 2.47 | 0.60 | 0.82 | 2.47 |
Clearance | 0, 1, 0 | 3.40 | 0.25 | 0.41 | −0.25 | |
Distance | 0, 0, 1 | 3.88 | 0.25 | 0.0 | 0.0 | |
Multi-objective | 1, 1, 1 | 3.88 | 0.25 | 0.0 | 3.63 |
Grid Size | Resolution | Step 1 (s) | ICR Candidates | GD (s) | BFS (s) |
---|---|---|---|---|---|
200 × 200 | 0.05 m | 0.32 | 1107 | 1.3 | 7.52 |
1000 × 1000 | 0.01 m | 109.4 | 26,999 | 1.9 | 2417.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Le, A.V.; Hoong, J.C.C.; Hayat, A.A.; Ramalingam, B.; Mohan, R.E.; Leong, K.; Elangovan, K.; Tran, M.; Bui, M.V.; et al. Multi-Objective Instantaneous Center of Rotation Optimization Using Sensors Feedback for Navigation in Self-Reconfigurable Pavement Sweeping Robot. Mathematics 2022, 10, 3169. https://doi.org/10.3390/math10173169
Yi L, Le AV, Hoong JCC, Hayat AA, Ramalingam B, Mohan RE, Leong K, Elangovan K, Tran M, Bui MV, et al. Multi-Objective Instantaneous Center of Rotation Optimization Using Sensors Feedback for Navigation in Self-Reconfigurable Pavement Sweeping Robot. Mathematics. 2022; 10(17):3169. https://doi.org/10.3390/math10173169
Chicago/Turabian StyleYi, Lim, Anh Vu Le, Joel Chan Cheng Hoong, Abdullah Aamir Hayat, Balakrishnan Ramalingam, Rajesh Elara Mohan, Kristor Leong, Karthikeyan Elangovan, Minh Tran, Minh V. Bui, and et al. 2022. "Multi-Objective Instantaneous Center of Rotation Optimization Using Sensors Feedback for Navigation in Self-Reconfigurable Pavement Sweeping Robot" Mathematics 10, no. 17: 3169. https://doi.org/10.3390/math10173169
APA StyleYi, L., Le, A. V., Hoong, J. C. C., Hayat, A. A., Ramalingam, B., Mohan, R. E., Leong, K., Elangovan, K., Tran, M., Bui, M. V., & Duc, P. V. (2022). Multi-Objective Instantaneous Center of Rotation Optimization Using Sensors Feedback for Navigation in Self-Reconfigurable Pavement Sweeping Robot. Mathematics, 10(17), 3169. https://doi.org/10.3390/math10173169