Predictability of Population Fluctuations
Abstract
:1. Introduction
2. The Model: One Species with Temporally Correlated Noise
3. Temporal Autocorrelations and Cross-Correlations
3.1. Maxima of the Correlation Functions
3.2. Temporal Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computation of Temporal Correlation Functions and Times
Appendix A.1. Wiener Process Temporal Autocorrelation
Appendix A.2. Wiener—Colored-Noise Temporal Cross-Correlation
Appendix A.3. Wiener—Population Temporal Cross-Correlation
Appendix A.4. Colored-Noise Autocorrelations
Appendix A.5. Colored-Noise—Population Cross-Correlation
Appendix A.6. Autocorrelations of the Population Fluctuations
Appendix A.7. Maxima
Appendix A.8. Correlation Times
References
- Gotelli, N.J. A Primer of Ecology, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2008. [Google Scholar]
- Lande, R.; Engen, S.; Saether, B.-E. Stochastic Population Dynamics in Ecology and Conservation. In Oxford Series in Ecology and Evolution; Oxford University Press: Oxford, UK, 2003. [Google Scholar] [CrossRef]
- Fujiwara, M.; Takada, T. Environmental Stochasticity. eLS 2017, 1–8. [Google Scholar] [CrossRef]
- Nowicki, P.; Bonelli, S.; Barbero, F.; Balletto, E. Relative Importance of Density-Dependent Regulation and Environmental Stochasticity for Butterfly Population Dynamics. Oecologia 2009, 161, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Saltz, D.; Rubenstein, D.I.; White, G.C. The Impact of Increased Environmental Stochasticity Due to Climate Change on the Dynamics of Asiatic Wild Ass. Conserv. Biol. 2006, 20, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Mangel, M.; Tier, C. Dynamics of Dynamics of Metapopulations with Demographic Stochasticity and Environmental Catastrophes. Theor. Popul. Biol. 1993, 44, 1–31. [Google Scholar] [CrossRef]
- Shaffer, M. Minimum Viable Populations: Coping with Uncertainty. In Viable Populations for Conservation; Cambridge University Press: Cambridge, UK, 1987; pp. 69–86. [Google Scholar] [CrossRef]
- Luis, A.D.; Douglass, R.J.; Mills, J.N.; Bjørnstad, O.N. Environmental Fluctuations Lead to Predictability in Sin Nombre Hantavirus Outbreaks. Ecology 2015, 96, 1691–1701. [Google Scholar] [CrossRef]
- Schreiber, S.J. Interactive Effects of Temporal Correlations, Spatial Heterogeneity and Dispersal on Population Persistence. Proc. R. Soc. B Biol. Sci. 2010, 277, 1907–1914. [Google Scholar] [CrossRef]
- Crespo-Miguel, R.; Jarillo, J.; Cao-García, F.J. Dispersal-induced resilience to stochastic environmental fluctuations in populations with Allee effect. Phys. Rev. E 2022, 105, 014413. [Google Scholar] [CrossRef]
- Petchey, O.L. Environmental Colour Affects Aspects of Single-Species Population Dynamics. Proc. R. Soc. B Boil. Sci. 2000, 267, 747–754. [Google Scholar] [CrossRef]
- Halley, J.M. Ecology, Evolution and 1f-Noise. Trends Ecol. Evol. 1996, 11, 33–37. [Google Scholar] [CrossRef]
- Ripa, J.; Lundberg, P. Noise Colour and the Risk of Population Extinctions. Proc. R. Soc. London 1996, 263, 1751–1753. [Google Scholar] [CrossRef]
- Heino, M.; Ripa, J.; Kaitala, V. Extinction Risk under Coloured Environmental Noise. Ecography 2000, 23, 177–184. [Google Scholar] [CrossRef]
- Greenman, J.V.; Benton, T.G. The Amplification of Environmental Noise in Population Models: Causes and Consequences. Am. Nat. 2003, 161, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Kamenev, A.; Meerson, B.; Shklovskii, B. How Colored Environmental Noise Affects Population Extinction. Phys. Rev. Lett. 2008, 101, 268103. [Google Scholar] [CrossRef] [PubMed]
- Spanio, T.; Hidalgo, J.; A Muñoz, M. Impact of Environmental Colored Noise in Single-Species Population Dynamics. Phys. Rev. E 2017, 96, 042301. [Google Scholar] [CrossRef] [PubMed]
- Laakso, J.; Löytynoja, K.; Kaitala, V. Environmental Noise and Population Dynamics of the Ciliated Protozoa Tetrahymena Thermophila in Aquatic Microcosms. Oikos 2003, 102, 663–671. [Google Scholar] [CrossRef]
- Reuman, D.C.; Costantino, R.F.; Desharnais, R.A.; Cohen, J.E. Colour of Environmental Noise Affects the Nonlinear Dynamics of Cycling, Stage-Structured Populations. Ecol. Lett. 2008, 11, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Moses, M.E.; West, G.B.; Hou, C.; Brown, J.H. A General Model for Effects of Temperature on Ectotherm Ontogenetic Growth and Development. Proc. R. Soc. B Boil. Sci. 2011, 279, 1840–1846. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Heinig, R.L.; Seliga, R.A.; Blanford, J.I.; Blanford, S.; Murdock, C.C.; Thomas, M.B. Temperature Variation Makes Ectotherms More Sensitive to Climate Change. Glob. Chang. Biol. 2013, 19, 2373–2380. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D. Temperature and Organism Size—A Biological Law for Ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar] [CrossRef]
- De Jong, G.; van der Have, T.M. Temperature Dependence of Development Rate, Growth Rate and Size: From Biophysics to Adaptation. In Phenotypic Plasticity of Insects: Mechanisms and Consequence; Science Publishers, Inc.: Plymouth, UK, 2009; pp. 461–526. [Google Scholar]
- Pimm, S.L.; Redfearn, A. The Variability of Population Densities. Nature 1988, 334, 613–614. [Google Scholar] [CrossRef]
- Séférian, R.; Bopp, L.; Gehlen, M.; Swingedouw, D.; Mignot, J.; Guilyardi, E.; Servonnat, J. Multiyear Predictability of Tropical Marine Productivity. Proc. Natl. Acad. Sci. USA 2014, 111, 11646–11651. [Google Scholar] [CrossRef] [PubMed]
- Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M. Crop Yield as a Bioclimatic Index of El Niño Impact in Europe: Crop Forecast Implications. Agric. For. Meteorol. 2014, 198–199, 42–52. [Google Scholar] [CrossRef]
- Diouf, I.; Suárez-Moreno, R.; Rodríguez-Fonseca, B.; Caminade, C.; Wade, M.; Thiaw, W.M.; Deme, A.; Morse, A.P.; Ndione, J.-A.; Gaye, A.T.; et al. Oceanic Influence on Seasonal Malaria Incidence in West Africa. Weather Clim. Soc. 2022, 14, 287–302. [Google Scholar] [CrossRef]
- Gómara, I.; Rodríguez-Fonseca, B.; Mohino, E.; Losada, T.; Polo, I.; Coll, M. Skillful prediction of tropical Pacific fisheries provided by Atlantic Niños. Environ. Res. Lett. 2021, 16, 054066. [Google Scholar] [CrossRef]
- García-Ojalvo, J.; Sancho, J.M.; Ramírez-Piscina, L. Generation of spatiotemporal colored noise. Phys. Rev. A 1992, 46, 4670–4675. [Google Scholar] [CrossRef]
- Hasselmann, K. Stochastic Climate Models Part I. Theory. Theory. Tellus 1976, 28, 473–485. [Google Scholar] [CrossRef]
- Jarillo, J.; Saether, B.-E.; Engen, S.; Cao, F.J. Spatial Scales of Population Synchrony of Two Competing Species: Effects of Harvesting and Strength of Competition. Oikos 2018, 127, 1459–1470. [Google Scholar] [CrossRef]
- Jarillo, J.; Sæther, B.-E.; Engen, S.; Cao-García, F.J. Spatial Scales of Population Synchrony in Predator-Prey Systems. Am. Nat. 2020, 195, 216–230. [Google Scholar] [CrossRef]
- Lee, A.; Jarillo, J.; Peeters, B.; Hansen, B.; Cao-García, F.; Sæther, B.; Engen, S. Population Responses to Harvesting in Fluctuating Environments. Clim. Res. 2022, 86, 79–91. [Google Scholar] [CrossRef]
- Fernández-Grande, M.A.; Cao-García, F.J. Spatial Scales of Population Synchrony Generally Increases as Fluctuations Propagate in a Two Species Ecosystem. arXiv 2020, arXiv:2012.11043. Available online: https://arxiv.org/ftp/arxiv/papers/2012/2012.11043.pdf (accessed on 1 August 2022).
- Iizumi, T.; Luo, J.-J.; Challinor, A.; Sakurai, G.; Yokozawa, M.; Sakuma, H.; Brown, M.; Yamagata, T. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun. 2014, 5, 3712. [Google Scholar] [CrossRef] [PubMed]
- Watters, G.M.; Olson, R.J.; Francis, R.C.; Fiedler, P.C.; Polovina, J.J.; Reilly, S.B.; Aydin, K.Y.; Boggs, C.H.; E Essington, T.; Walters, C.J.; et al. Physical Forcing and the Dynamics of the Pelagic Ecosystem in the Eastern Tropical Pacific: Simulations with ENSO-Scale and Global-Warming Climate Drivers. Can. J. Fish. Aquat. Sci. 2003, 60, 1161–1175. [Google Scholar] [CrossRef]
- Christensen, V.; Coll, M.; Buszowski, J.; Cheung, W.W.L.; Frölicher, T.; Steenbeek, J.; Stock, C.A.; Watson, R.; Walters, C.J. Oceanic Influence on Seasonal Malaria Incidence in West Africa. Glob. Ecol. Biogeogr. 2015, 24, 507–517. [Google Scholar] [CrossRef]
- Lowe, W.H.; Martin, T.E.; Skelly, D.K.; Woods, H.A. Metamorphosis in an Era of Increasing Climate Variability. Trends Ecol. Evol. 2021, 36, 360–375. [Google Scholar] [CrossRef] [PubMed]
Variables | Description |
---|---|
Population size at a given time t. Dimensionless. | |
. Dimensionless. | |
depend on the kind of environmental fluctuations considered (e.g., temperature or humidity) | |
Characteristic correlation time of the environmental fluctuations. Units of time. | |
Characteristic time of return to equilibrium of the population. Units of time. | |
. Units of time−1. | |
. Dimensionless. | |
·time1/2. | |
. ·time)−1. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo-Miguel, R.; Cao-García, F.J. Predictability of Population Fluctuations. Mathematics 2022, 10, 3176. https://doi.org/10.3390/math10173176
Crespo-Miguel R, Cao-García FJ. Predictability of Population Fluctuations. Mathematics. 2022; 10(17):3176. https://doi.org/10.3390/math10173176
Chicago/Turabian StyleCrespo-Miguel, Rodrigo, and Francisco J. Cao-García. 2022. "Predictability of Population Fluctuations" Mathematics 10, no. 17: 3176. https://doi.org/10.3390/math10173176
APA StyleCrespo-Miguel, R., & Cao-García, F. J. (2022). Predictability of Population Fluctuations. Mathematics, 10(17), 3176. https://doi.org/10.3390/math10173176