Analysis of a Class of Predation-Predation Model Dynamics with Random Perturbations
Abstract
:1. Introduction
2. Global Existence and Uniqueness of the Solution
3. The Nature of the Solution
3.1. Existence and Ergodicity of the Stationary Distribution
3.2. The Progressive Nature of the System (2) at the Internal Equilibrium Point in the System (1)
3.3. Numerical Simulation
4. The Final Behavior of the Population
4.1. Environmental Forces to Eliminate Insect Pests
4.2. The Extinction of the Populations
4.3. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banasiak, J. Multi-scale problems in complex domains—A mathematical framework for systems biology: Comment on “On the interplay between mathematics and biology, hallmarks toward a new systems biology” by N. Bellomo, A. Elaiw, AM Althiabi and MA Alghamdi. Phys. Life Rev. 2015, 12, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.; Holden, H.; Jakobsen, E.R.; Stenseth, N.C. Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–MacArthur predator—Prey model. Proc. Natl. Acad. Sci. USA 2021, 118, e2017463118. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zheng, H.; Zhang, S. Dynamics of a non-autonomous predator-prey system with Hassell-Varley-Holling? function response and mutual interference. AIMS Math. 2021, 6, 6033–6049. [Google Scholar] [CrossRef]
- Calsina, À.; Sanchón, M. Stability and instability of equilibria of an equation of size structured population dynamics. J. Math. Anal. Appl. 2003, 286, 435–452. [Google Scholar] [CrossRef]
- Shen, S.H.; Yuan, S.L.; Luo, J.M.; Zhao, Y. Qualitative analysis of a ratio-dependent predator-prey system with Holling-(n+1) functional response. J. Univ. Shanghai Sci. Technol. 2009, 31, 11–13. [Google Scholar]
- Bezabih, A.F.; Edessa, G.K.; Rao, K.P. Eco-epidemiological modelling and analysis of prey-predator population. J. Appl. Math. Stat. 2021, 2021, 6679686. [Google Scholar]
- Karev, G.P.; Kareva, I.G. Replicator Equations and Models of Biological Populations and Communities. Math. Model. Nat. Phenom. 2014, 9, 68–95. [Google Scholar] [CrossRef]
- Lv, J.; Zou, X.; Li, Y. Dynamical properties of a stochastic predator-prey model with functional response. J. Appl. Anal. Comput. 2020, 10, 1242–1255. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Yan, J. Positive Periodic Solutions for Neutral Delay Ratio-Dependent Predator-Prey Model with Holling-Tanner Functional Response. Int. J. Math. Math. Sci. 2011, 2011, 376862. [Google Scholar] [CrossRef]
- Moaaz, O.; Awrejcewicz, J.; Mahjoub, H. Global behavior and the periodic character of some biological models. Adv. Differ. Equ. 2020, 2020, 410. [Google Scholar] [CrossRef]
- Ettaieb, A.; Ouerdiane, H.; Rguigui, H. Quantum White Noise Stochastic Analysis Based on Nuclear Algebras of Entire Functions. Bull. Malays. Math. Sci. Soc. 2021, 44, 599–623. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Tang, L.; Zhou, S.; Han, Z. Random exponential attractor for a non-autonomous Zakharov lattice system with multiplicative white noise. J. Differ. Equ. Appl. 2021, 27, 902–921. [Google Scholar] [CrossRef]
- dos Santos, M.A.F.; Menon, L., Jr.; Anteneodo, C. Efficiency of random search with space-dependent diffusivity. arXiv 2022, arXiv:2206.14229. [Google Scholar]
- Radice, M. Diffusion processes with Gamma-distributed resetting and non-instantaneous returns. J. Phys. A Math. Theor. 2022, 55, 224002. [Google Scholar] [CrossRef]
- Toledo-Marin, J.Q.; Boyer, D.; Sevilla, F.J. Predator-prey dynamics: Chasing by stochastic resetting. arXiv 2019, arXiv:1912.02141. [Google Scholar]
- Navascués, M. Resetting uncontrolled quantum systems. Phys. Rev. X 2018, 8, 031008. [Google Scholar] [CrossRef]
- Wald, S.; Böttcher, L. From classical to quantum walks with stochastic resetting on networks. Phys. Rev. E 2021, 103, 012122. [Google Scholar] [CrossRef]
- Reuveni, S.; Urbakh, M.; Klafter, J. Role of substrate unbinding in Michaelis–Menten enzymatic reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 4391–4396. [Google Scholar] [CrossRef]
- Roldán, É.; Lisica, A.; Sánchez-Taltavull, D.; Grill, S.W. Stochastic resetting in backtrack recovery by RNA polymerases. Phys. Rev. E 2016, 93, 062411. [Google Scholar] [CrossRef]
- Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]
- Stojkoski, V.; Sandev, T.; Kocarev, L.; Pal, A. Geometric Brownian motion under stochastic resetting: A stationary yet nonergodic process. Phys. Rev. E 2021, 104, 014121. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wang, X. Regularity property of solution to two-parameter stochastic volterra equation with non-lipschitz coefficients. Acta Math. Sci. 2013, 33, 872–882. [Google Scholar] [CrossRef]
- Chen, P.; Xin, Z.; Zhang, X. Lipschitz stability of nonlinear ordinary differential equations with non-instantaneous impulses in ordered Banach spaces. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 657–663. [Google Scholar] [CrossRef]
- Li, C.; Liu, S. Stochastic invariance for hybrid stochastic differential equation with non-Lipschitz coefficients. AIMS Math. 2020, 5, 3612–3633. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D. Dynamics of a stochastic multigroup SEI epidemic model. Stoch. Anal. Appl. 2022, 40, 623–656. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Din, A. Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity. AIMS Math. 2021, 6, 12359–12378. [Google Scholar] [CrossRef]
- Duong, M.H. Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games. J. Math. Biol. 2016, 73, 1727–1760. [Google Scholar] [CrossRef]
- Baxter, J.R.; Hernandez, M.N. Stopping time convergence for processes associated with Dirichlet forms. Potential Anal. 2019, 50, 245–277. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Stability of generalized proportional Caputo fractional differential equations by Lyapunov functions. Fractal Fract. 2022, 6, 34. [Google Scholar] [CrossRef]
- Ignatyev, A.O. Lyapunov Function Method for Systems of Difference Equations: Stability with Respect to Part of the Variables. Differ. Equ. 2022, 58, 405–414. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Alnafisah, Y. A New Approach to Compare the Strong Convergence of the Milstein Scheme with the Approximate Coupling Method. Fractal Fract. 2022, 6, 339. [Google Scholar] [CrossRef]
- Ren, Q.; Tian, H. Generalized two-step Milstein methods for stochastic differential equations. Int. J. Comput. Math. 2020, 97, 1363–1379. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, X.; Song, M.H.; Liu, M.Z. Convergence rate of the truncated Milstein method of stochastic differential delay equations. Appl. Math. Comput. 2019, 357, 263–281. [Google Scholar] [CrossRef]
- Hao, S.; Liu, Q. Convergence rates in the law of large numbers for arrays of martingale differences. J. Math. Anal. Appl. 2014, 417, 733–773. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Liu, P.; Luo, W.; Chen, H. Analysis of a Class of Predation-Predation Model Dynamics with Random Perturbations. Mathematics 2022, 10, 3238. https://doi.org/10.3390/math10183238
Tan X, Liu P, Luo W, Chen H. Analysis of a Class of Predation-Predation Model Dynamics with Random Perturbations. Mathematics. 2022; 10(18):3238. https://doi.org/10.3390/math10183238
Chicago/Turabian StyleTan, Xuewen, Pengpeng Liu, Wenhui Luo, and Hui Chen. 2022. "Analysis of a Class of Predation-Predation Model Dynamics with Random Perturbations" Mathematics 10, no. 18: 3238. https://doi.org/10.3390/math10183238
APA StyleTan, X., Liu, P., Luo, W., & Chen, H. (2022). Analysis of a Class of Predation-Predation Model Dynamics with Random Perturbations. Mathematics, 10(18), 3238. https://doi.org/10.3390/math10183238