Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems
Abstract
:1. Introduction
2. Preliminaries
3. Proof of Theorem 1
4. Proof of Theorem 2
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trudinger, N.S.; Wang, X.J. Hessian measures II. Ann. Math. 1999, 579–604. [Google Scholar] [CrossRef]
- Guan, P.; Trudinger, N.S.; Wang, X.J. On the Dirichlet problem for degenerate Monge–Ampère equations. Acta Math. 1999, 182, 87–104. [Google Scholar] [CrossRef]
- Lazer, A.C.; McKenna, P.J. On singular boundary value problems for the Monge–Ampère operator. J. Math. Anal. Appl. 1996, 197, 341–362. [Google Scholar] [CrossRef]
- Trudinger, N.S.; Wang, X.J. The Monge–Ampère equation and its geometric applications. Handb. Geom. Anal. 2008, 1, 467–524. [Google Scholar]
- Wang, F.; An, Y. Triple nontrivial radial convex solutions of systems of Monge–Ampère equations. Appl. Math. Lett. 2012, 25, 88–92. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Wang, B. An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
- Zhou, Z.; Bao, J.; Wang, B. A Liouville theorem of parabolic Monge–Ampère equations in half-space. Discret. Contin. Dyn. Syst. 2021, 41, 1561–1578. [Google Scholar] [CrossRef]
- Keller, J. On solutions of Δu = f(u). Comm. Pure Appl. Math. 1957, 10, 503–510. [Google Scholar] [CrossRef]
- Osserman, R. On the inequality Δu ≥ f(u). Pac. J. Math. 1957, 7, 1641–1647. [Google Scholar] [CrossRef]
- López-Gómez, J. Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Differ. Equ. 2006, 224, 385–439. [Google Scholar] [CrossRef]
- Mawhin, J.; Papini, D.; Zanolin, F. Boundary blow-up for differential equations with indefinite weight. J. Differ. Equ. 2003, 188, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. Existence of explosive positive solutions of quasilinear elliptic equations. Appl. Math. Comput. 2006, 177, 581–588. [Google Scholar] [CrossRef]
- Ji, X.; Bao, J. Necessary and sufficient conditions on solvability for Hessian inequalities. Proc. Am. Math. Soc. 2010, 138, 175–188. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, S. Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights. Appl. Math. Lett. 2015, 50, 48–55. [Google Scholar] [CrossRef]
- Naito, Y.; Usami, H. Entire solutions of the inequality div(A(|Du|)Du) ≥ f(u). Math. Z. 1997, 225, 167–175. [Google Scholar] [CrossRef]
- Ni, W.M.; Serrin, J. Existence and nonexistence theorems for groundstates of quasilinear partial differential equations: The anomalous case. Accad. Naz. Lincei 1986, 77, 231–257. [Google Scholar]
- Filippucci, R. Existence of radial solutions of elliptic systems and inequalities of mean curvature type. J. Math. Anal. Appl. 2007, 334, 604–620. [Google Scholar] [CrossRef]
- Filippucci, R. Existence of global solutions of elliptic systems. J. Math. Anal. Appl. 2004, 293, 677–692. [Google Scholar] [CrossRef]
- Anthal, G.C.; Giacomoni, J.; Sreenadh, K. Some existence and uniqueness results for logistic Choquard equations. Rend. Del Circ. Mat. Palermo Ser. 2 2022, 1–38. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Li, X. Positive solutions for fractional differential equation at resonance under integral boundary conditions. Demonstr. Math. 2022, 55, 238–253. [Google Scholar] [CrossRef]
- Bao, J.; Feng, Q. Necessary and sufficient conditions on global solvability for the p-k-Hessian inequalities. Can. Math. Bull. 2020, 1–16. [Google Scholar] [CrossRef]
- Covei, D.P. A remark on the existence of positive radial solutions to a Hessian system. AIMS Math. 2021, 6, 14035–14043. [Google Scholar] [CrossRef]
- Lair, A.V. Entire large solutions to semilinear elliptic systems. J. Math. Anal. Appl. 2011, 382, 324–333. [Google Scholar] [CrossRef]
- Li, Y.Y.; Nguyen, L.; Wang, B. The axisymmetric σk-Nirenberg problem. J. Funct. Anal. 2021, 281, 109–198. [Google Scholar] [CrossRef]
- Li, Y.Y.; Nguyen, L.; Wang, B. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc. Var. Partial Differ. Equ. 2018, 57, 96. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, B. Comparison principles for some fully nonlinear sub-elliptic equations on the Heisenberg group. Anal. Theory Appl. 2019, 35, 312–334. [Google Scholar]
- Wang, B. A Liouville-type theorem for fully nonlinear CR invariant equations on the Heisenberg group. Commun. Contemp. Math. 2021, 2150060. [Google Scholar] [CrossRef]
- Wang, X. The k-Hessian equation, Geometric analysis and PDEs. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1977, pp. 177–252. [Google Scholar]
- Zhang, X.; Jiang, J.; Wu, Y.; Wiwatanapataphee, B. Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity. Appl. Math. Lett. 2021, 11, 106826. [Google Scholar] [CrossRef]
- Dai, L. Existence and nonexistence of subsolutions for augmented Hessian equations. Discret. Contin. Dyn. Syst. 2020, 40, 579–596. [Google Scholar] [CrossRef]
- Lair, A.V.; Wood, A.W. Existence of entire large positive solutions of semilinear elliptic systems. J. Differ. Equ. 2000, 164, 380–394. [Google Scholar] [CrossRef]
- Dkhil, A.B. Positive solutions for nonlinear elliptic systems. Electron. J. Differ. Equ. 2012, 2012, 1–10. [Google Scholar]
- Li, H.; Zhang, P.; Zhang, Z. A remark on the existence of entire positive solutions for a class of semilinear elliptic systems. J. Math. Anal. Appl. 2010, 365, 338–341. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, X.; Feng, M. Entire positive k-convex solutions to k-Hessian type equations and systems. Electron. Res. Arch. 2022, 30, 481–491. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H. Existence of entire radial large solutions for a class of Monge–Ampère type equations and systems. Rocky Mt. 2020, 50, 1893–1899. [Google Scholar] [CrossRef]
- Dupaigne, L.; Ghergu, M.; Goubet, O.; Warnault, G. Entire large solutions for semilinear elliptic equations. J. Differ. Equ. 2012, 253, 2224–2251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, W.; Dai, L.; Wang, B. Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems. Mathematics 2022, 10, 3258. https://doi.org/10.3390/math10183258
Fan W, Dai L, Wang B. Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems. Mathematics. 2022; 10(18):3258. https://doi.org/10.3390/math10183258
Chicago/Turabian StyleFan, Wei, Limei Dai, and Bo Wang. 2022. "Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems" Mathematics 10, no. 18: 3258. https://doi.org/10.3390/math10183258
APA StyleFan, W., Dai, L., & Wang, B. (2022). Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems. Mathematics, 10(18), 3258. https://doi.org/10.3390/math10183258