Parabolic Hessian Equations Outside a Cylinder
Abstract
:1. Introduction
2. Several Lemmas
3. Proof of Theorem 1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, K.S.; Wang, X.J. A variational theory of the Hessian equation. Comm. Pure Appl. Math. 2001, 54, 1029–1064. [Google Scholar] [CrossRef]
- Ivochkina, N.; Ladyzhenskaya, O. On parabolic problems generated by some symmetric functions of the eigenvalues of the Hessian. Topol. Methods Nonlinear Anal. 1994, 4, 19–29. [Google Scholar] [CrossRef]
- Lieberman, G.M. Second Order Parabolic Differential Equations; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1996. [Google Scholar]
- Ren, C. The first initial-boundary value problem for fully nonlinear parabolic equations generated by functions of the eigenvalues of the Hessian. J. Math. Anal. Appl. 2008, 339, 1362–1373. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Li, Y. On the exterior Dirichlet problem for Hessian equations. Trans. Am. Math. Soc. 2014, 366, 6183–6200. [Google Scholar] [CrossRef]
- Li, H.; Dai, L. The Dirichlet Problem of Hessian Equation in Exterior Domains. Mathematics 2020, 8, 666. [Google Scholar] [CrossRef]
- Li, H.; Bao, J. The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian. J. Differ. Equ. 2014, 256, 2480–2501. [Google Scholar] [CrossRef]
- Li, Y.; Nguyen, L.; Wang, B. The axisymmetric σk-Nirenberg problem. J. Funct. Anal. 2021, 281, 60. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B. Strong comparison principles for some nonlinear degenerate elliptic equations. Acta Math. Sci. Ser. B 2018, 38, 1583–1590. [Google Scholar] [CrossRef]
- Li, Y.; Nguyen, L.; Wang, B. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc. Var. Partial Differ. Equ. 2018, 57, 96. [Google Scholar] [CrossRef]
- Wang, B. A Liouville-type theorem for fully nonlinear CR invariant equations on the Heisenberg group. Commun. Contemp. Math. 2021, 2150060. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems for a parabolic Monge–Ampère equation. Nonlinear Anal. 2014, 100, 99–110. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems of parabolic Monge–Ampère equations for n = 2. Comput. Math. Appl. 2014, 67, 1497–1506. [Google Scholar] [CrossRef]
- Dai, L. Exterior problems for parabolic Hessian equations (Chinese). Adv. Math. 2016, 45, 561–571. [Google Scholar]
- Gong, S.; Zhou, Z.; Bao, J. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Commun. Pure Appl. Anal. 2020, 19, 4921–4936. [Google Scholar] [CrossRef]
- Dai, L. Parabolic Monge-Ampère equations on exterior domains (Chinese). Acta Math. Sin. (Chin. Ser.) 2015, 58, 447–456. [Google Scholar]
- Dai, L.; Cheng, H. The first initial-boundary value problem of parabolic Monge–Ampère equations outside a bowl-shaped domain. Bound. Value Probl. 2021, 2021, 29. [Google Scholar] [CrossRef]
- Az-Zobi, E.; Al-Khaled, K.; Darweesh, A. Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage decomposition method. Mathematics 2019, 7, 550. [Google Scholar] [CrossRef]
- Nisar, K.; Sabir, Z.; Asif Zahoor Raja, M.E. Evolutionary Integrated Heuristic with Gudermannian Neural Networks for Second Kind of Lane–Emden Nonlinear Singular Models. Appl. Sci. 2021, 11, 4725. [Google Scholar] [CrossRef]
- Wang, B.; Bao, J. Asymptotic behavior on a kind of parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 344–370. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, J.; Wang, B. An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial. Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
- Zhou, Z.; Bao, J.; Wang, B. A Liouville theorem of parabolic Monge–Ampère equations in half-space. Discret. Contin. Dyn. Syst. 2021, 41, 1561–1578. [Google Scholar] [CrossRef]
- Zhan, Y. Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications. Ph.D. Thesis, ProQuest LLC, Ann Arbor, MI, USA, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Guo, X. Parabolic Hessian Equations Outside a Cylinder. Mathematics 2022, 10, 2839. https://doi.org/10.3390/math10162839
Dai L, Guo X. Parabolic Hessian Equations Outside a Cylinder. Mathematics. 2022; 10(16):2839. https://doi.org/10.3390/math10162839
Chicago/Turabian StyleDai, Limei, and Xuewen Guo. 2022. "Parabolic Hessian Equations Outside a Cylinder" Mathematics 10, no. 16: 2839. https://doi.org/10.3390/math10162839
APA StyleDai, L., & Guo, X. (2022). Parabolic Hessian Equations Outside a Cylinder. Mathematics, 10(16), 2839. https://doi.org/10.3390/math10162839